Research Offers Radical Rethink of How to Improve AI in the Future

Computer scientists at the University of Essex have devised a radically different approach to improving artificial intelligence (AI) in the future.

Published in top machine learning journal - the Journal of Machine Learning Research - the Essex team hope this research will provide a backbone for the next generation of AI and machine learning breakthroughs.

This could be translated to improvements in everything from driverless cars and smartphones having a better understanding of voice commands, to improved automatic medical diagnoses and drug discovery.

"Artificial intelligence research ultimately has the goal of producing completely autonomous and intelligent machines which we can converse with and will do tasks for us, and this new published work accelerates our progress towards that," explained co-lead author Dr Michael Fairbank, from Essex’s School of Computer Science and Electronic Engineering.

The recent impressive breakthroughs in AI around vision tasks, speech recognition and language translation have involved "deep learning", which means training multi-layered artificial neural networks to solve a task. However, training these deep neural networks is a computationally expensive task, requiring huge amounts of training examples and computing time.

What the Essex team, which includes Professor Luca Citi and Dr Spyros Samothrakis, has achieved is to devise a radically different approach to training neural networks in deep learning.

"Our new method, which we call Target Space, provides researchers with a step change in the way they can improve and build their AI creations," added Dr Fairbank. "Target Space is a paradigm-changing view, which turns the training process of these deep neural networks on its head, ultimately enabling the current progress in AI developments to happen faster."

The standard way people train neural networks to improve performance is to repeatedly make tiny adjustments to the connection strengths between the neurones in the network. The Essex team have taken a new approach. So, instead of tweaking connection strengths between neurones, the new "target-space" method proposes to tweak the firing strengths of the neurones themselves.

Professor Citi added: "This new method stabilises the learning process considerably, by a process which we call cascade untangling. This allows the neural networks being trained to be deeper, and therefore more capable, and at the same time potentially requiring fewer training examples and less computing resources. We hope this work will provide a backbone for the next generation of artificial intelligence and machine-learning breakthroughs."

The next steps for the research are to apply the method to various new academic and industrial applications.

Michael Fairbank, Spyridon Samothrakis, and Luca Citi.
Deep Learning in Target Space.
Journal of Machine Learning Research 23.8 (2022): 1-46.

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...