Research Offers Radical Rethink of How to Improve AI in the Future

Computer scientists at the University of Essex have devised a radically different approach to improving artificial intelligence (AI) in the future.

Published in top machine learning journal - the Journal of Machine Learning Research - the Essex team hope this research will provide a backbone for the next generation of AI and machine learning breakthroughs.

This could be translated to improvements in everything from driverless cars and smartphones having a better understanding of voice commands, to improved automatic medical diagnoses and drug discovery.

"Artificial intelligence research ultimately has the goal of producing completely autonomous and intelligent machines which we can converse with and will do tasks for us, and this new published work accelerates our progress towards that," explained co-lead author Dr Michael Fairbank, from Essex’s School of Computer Science and Electronic Engineering.

The recent impressive breakthroughs in AI around vision tasks, speech recognition and language translation have involved "deep learning", which means training multi-layered artificial neural networks to solve a task. However, training these deep neural networks is a computationally expensive task, requiring huge amounts of training examples and computing time.

What the Essex team, which includes Professor Luca Citi and Dr Spyros Samothrakis, has achieved is to devise a radically different approach to training neural networks in deep learning.

"Our new method, which we call Target Space, provides researchers with a step change in the way they can improve and build their AI creations," added Dr Fairbank. "Target Space is a paradigm-changing view, which turns the training process of these deep neural networks on its head, ultimately enabling the current progress in AI developments to happen faster."

The standard way people train neural networks to improve performance is to repeatedly make tiny adjustments to the connection strengths between the neurones in the network. The Essex team have taken a new approach. So, instead of tweaking connection strengths between neurones, the new "target-space" method proposes to tweak the firing strengths of the neurones themselves.

Professor Citi added: "This new method stabilises the learning process considerably, by a process which we call cascade untangling. This allows the neural networks being trained to be deeper, and therefore more capable, and at the same time potentially requiring fewer training examples and less computing resources. We hope this work will provide a backbone for the next generation of artificial intelligence and machine-learning breakthroughs."

The next steps for the research are to apply the method to various new academic and industrial applications.

Michael Fairbank, Spyridon Samothrakis, and Luca Citi.
Deep Learning in Target Space.
Journal of Machine Learning Research 23.8 (2022): 1-46.

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...