Giving AI Penalties to Get Better Diagnoses

Anyone waiting for the results of a medical test knows the anxious question: 'Will my life change completely when I know?' And the relief if you test negative.

Nowadays, Artificial Intelligence (AI) is deployed more and more to predict life-threatening disease. But there remains a big challenge in getting the Machine Learning (ML) algorithms precise enough. Specifically, getting the algorithms to correctly diagnose if someone is sick.

Machine Learning (ML) is the branch of AI where algorithms learn from datasets and get smarter in the process.

"Let's say there is a dataset about a serious disease. The dataset has 90 people who do not have the disease. But 10 of the people do have the disease," says Dr Ibomoiye Domor Mienye. Mienye is a post-doctoral AI researcher at the University of Johannesburg (UJ).

"As an example, an ML algorithm says that the 90 do not have the disease. That is correct so far. But it fails to diagnose the 10 that do have the disease. The algorithm is still regarded as 90% accurate," he says.

This is because accuracy has been defined in this way. But for health outcomes, it may be urgent to diagnose the 10 people with the disease and get them into treatment. That may be more important than complete accuracy about the 90 who do not have the condition, he adds.

Penalties against AI

In a research study published in Informatics in Medicine Unlocked, Mienye and Prof Yanxia Sun show how ML algorithms can be improved significantly for medical purposes. They used logistic regression, decision tree, XGBoost, and random forest algorithms.

These are supervised binary classification algorithms. That means they only learn from the 'yes/no' datasets provided to them.

Dr Mienye and Prof Sun are both from the Department of Electrical and Engineering Science at UJ.

The researchers built cost sensitivity into each of the algorithms.

This means the algorithm gets a much bigger penalty for telling a sick person in the dataset that they are healthy, than the other way round. In medical terms, the algorithms get bigger penalties for false negatives than for false positives.

Disease datasets AI learns from

Dr Mienye and Prof Sun used public learning datasets for diabetes, breast cancer, cervical cancer (858 records) and chronic kidney disease (400 records).

The datasets come from large hospitals or healthcare programs. In these binary datasets, people are classified as either having a disease, or not having it at all.

The algorithms they used are binary also. These can say “yes the person has the disease” or “no they don’t have it.” They tested all the algorithms on each dataset, both without and with the cost-sensitivity.

Significantly improved precision and recall

The results make it clear that the penalties work as intended in these datasets.

For chronic kidney disease for example, the Random Forest algorithm had precision at 0.972 and recall at 0.946, out of a perfect 1.000.

After the cost-sensitivity was added, the algorithm improved significantly to precision at 0.990 and recall at a perfect 1.000.

For CKD, the three other algorithms’ recall improved from high scores to a perfect 1.000.

Precision at 1.000 means the algorithm did not predict one or more false positives across the entire dataset. Recall at 1.000 means the algorithm did not predict one or more false negatives across the entire dataset.

With the other datasets, the results were different for different algorithms.

For cervical cancer, the cost-sensitive Random Forest and XGBoost algorithms improved from high scores to perfect precision and recall. However, the Logistic Regression and Decision Tree algorithms improved to much higher scores but did not reach 1.000.

The precision problem

In general, algorithms have been more accurate at saying people do not have a disease, than identifying the ones who are sick, says Mienye. This is an ongoing challenge in healthcare AI.

The reason is the way the algorithms learn. The algorithms learn from datasets that come from large hospitals or state healthcare programs.

But most of the people in those datasets do not have the conditions they are being tested for, says Mienye.

"At a large hospital, a person comes in to get tested for chronic kidney disease (CKD). Their doctor sent them there because some of their symptoms are CKD symptoms. The doctor would like to rule out CKD. Turns out, the person does not have CKD.

"This happens with lots of people. The dataset ends up with more people who do not have CKD, than people who do. We call this an imbalanced dataset."

When an algorithm starts learning from the dataset, it learns far less about CKD than it should, and isn't accurate enough in diagnosing ill patients - unless the algorithm is adjusted for the imbalance.

AI on the other side of a boat ride

Mienye grew up in a village near the Atlantic Ocean, that is not accessible by road.

"You have to use a speedboat from the nearest town to get there. The boat ride takes two to three hours," he says.

The nearest clinic is in the bigger town, on the other side of the boat ride.

The deep rural setting of his home village inspired him to see how AI can help people with little or no access to healthcare.

An old lady from his village is a good example of how more advanced AI algorithms may assist in future, he says. A cost-sensitive multiclass ML algorithm could assess the measured data for her blood pressure, sodium levels, blood sugar and more.

If her data is recorded correctly on a computer, and the algorithm learns from a multiclass dataset, that future AI could tell clinic staff which stage of chronic kidney disease she is at.

This village scenario is in the future, however.

Meanwhile the study’s four algorithms with cost sensitivity, are far more precise at diagnosing disease in their numerical datasets.

And they learn quickly, using the ordinary computer that one could expect to find in a remote town.

Ibomoiye Domor Mienye, Yanxia Sun.
Performance analysis of cost-sensitive learning methods with application to imbalanced medical data.
Informatics in Medicine Unlocked, 2021. doi: 10.1016/j.imu.2021.100690

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...