Brain Cell Differences could be Key to Learning in Humans and AI

The new study found that by tweaking the electrical properties of individual cells in simulations of brain networks, the networks learned faster than simulations with identical cells.

They also found that the networks needed fewer of the tweaked cells to get the same results, and that the method is less energy intensive than models with identical cells.

The authors say that their findings could teach us about why our brains are so good at learning, and might also help us to build better artificially intelligent systems, such as digital assistants that can recognise voices and faces, or self-driving car technology.

First author Nicolas Perez, a PhD student at Imperial College London’s Department of Electrical and Electronic Engineering, said: "The brain needs to be energy efficient while still being able to excel at solving complex tasks. Our work suggests that having a diversity of neurons in both brains and AI systems fulfils both these requirements and could boost learning."

The research is published in Nature Communications.

Why is a neuron like a snowflake?

The brain is made up of billions of cells called neurons, which are connected by vast 'neural networks' that allow us to learn about the world. Neurons are like snowflakes: they look the same from a distance but on further inspection it’s clear that no two are exactly alike.

By contrast, each cell in an artificial neural network - the technology on which AI is based - is identical, with only their connectivity varying. Despite the speed at which AI technology is advancing, their neural networks do not learn as accurately or quickly as the human brain - and the researchers wondered if their lack of cell variability might be a culprit.

They set out to study whether emulating the brain by varying neural network cell properties could boost learning in AI. They found that the variability in the cells improved their learning and reduced energy consumption.

Lead author Dr Dan Goodman, of Imperial's Department of Electrical and Electronic Engineering, said: "Evolution has given us incredible brain functions - most of which we are only just beginning to understand. Our research suggests that we can learn vital lessons from our own biology to make AI work better for us."

Tweaked timing

To carry out the study, the researchers focused on tweaking the "time constant" - that is, how quickly each cell decides what it wants to do based on what the cells connected to it are doing. Some cells will decide very quickly, looking only at what the connected cells have just done. Other cells will be slower to react, basing their decision on what other cells have been doing for a while.

After varying the cells’ time constants, they tasked the network with performing some benchmark machine learning tasks: to classify images of clothing and handwritten digits; to recognise human gestures; and to identify spoken digits and commands.

The results show that by allowing the network to combine slow and fast information, it was better able to solve tasks in more complicated, real-world settings.

When they changed the amount of variability in the simulated networks, they found that the ones that performed best matched the amount of variability seen in the brain, suggesting that the brain may have evolved to have just the right amount of variability for optimal learning.

Nicolas added: "We demonstrated that AI can be brought closer to how our brains work by emulating certain brain properties. However, current AI systems are far from achieving the level of energy efficiency that we find in biological systems.

"Next, we will look at how to reduce the energy consumption of these networks to get AI networks closer to performing as efficiently as the brain."

Perez-Nieves N, Leung VCH, Dragotti PL, Goodman DFM.
Neural heterogeneity promotes robust learning.
Nat Commun. 2021 Oct 4;12(1):5791. doi: 10.1038/s41467-021-26022-3

Most Popular Now

Artificial Intelligence in Healthcare Re…

This study presents an overview of the development, adoption and use of Artificial Intelligence (AI) technologies and applications in the healthcare sector across all Member States. The main aim of...

New App Helps Parents Identify Treatable…

A ground-breaking new, mobile phone app, 'GrowthMonitor' places the accurate measurement of children's height in the hands of parents and carers. Preliminary data to be presented at the Society for...

Dedalus Acquires Swiftqueue to Support P…

Dedalus Group ("Dedalus"), a leading international healthcare software solutions provider, has announced to have completed the acquisition of 100% of Swiftqueue Technologies Ltd a fast-growing cloud-native appointment and scheduling solution...

Bittium Exhibits its High-Tech Medical T…

Bittium exhibits its innovative products and solutions for cardiology and neurophysiology as well as R&D services for the development of medical and healthcare technology at the MEDICA 2021 event. It...

Development of AI Technology for Produci…

Transcranial focused ultrasound can be used to treat degenerative movement disorders, intractable pain, and mental disorders by delivering ultrasound energy to a specific area of the brain without opening the...

FDA Authorizes Marketing of Virtual Real…

The U.S. Food and Drug Administration today authorized marketing of EaseVRx, a prescription-use immersive virtual reality (VR) system that uses cognitive behavioral therapy and other behavioral methods to help with...

Tulane University Study Uses AI to Detec…

A Tulane University researcher found that artificial intelligence (AI) can accurately detect and diagnose colorectal cancer from tissue scans as well or better than pathologists, according to a new study...

Siemens Healthineers and UCSF Create Fir…

Siemens Healthineers and UC San Francisco have formed a research and innovation-driven collaboration to make radiological imaging greener, while improving access to and quality of radiological imaging in Northern California...

Open Call DIGITAL-2021-DEPLOY-01-HEALTH:…

The consolidation of a European framework and ecosystem of digital health solutions and services, covering technological and organisational innovation and addressing the needs of the involved stakeholders, including those of...

MEDICA 2021 + COMPAMED 2021: Holding the…

15 - 18 November 2021, Düsseldorf, Germany. This week, all of the big decision makers and professional experts from the international healthcare industry will finally be making their way to Düsseldorf...

MEDICA 2021 and COMPAMED 2021 have Far E…

15 - 18 November 2021, Düsseldorf, Germany. After their four-day run as an in-person event, MEDICA and COMPAMED have achieved extremely successful results in Düsseldorf. From 15 to 18 November 2021...

Philips Integrates MedChat's AI Capabili…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced a collaboration with USA-based MedChat to integrate MedChat's live chat and AI-driven chatbot services into Philips Patient...