Scientists Synthesized a Yellow Fever Drug Suggested by AI

Yellow fever is a deadly disease in overpopulated tropical regions of Africa and South America. Infected people have a temperature increase to 39-41°C, chills, severe headache, nausea, and vomiting. The patient’s face becomes dull, the eyelids swell and the skin turns yellow due to liver damage (hence the name of the disease). Before the yellow fever vaccine was developed, the infection claimed thousands of lives for example in 1871, 8 percent of the population of Buenos Aires died in the epidemic. In mosquito-infested areas, where the vaccination is not readily available to the majority of the population, outbreaks of infection still occur. The yellow fever virus, as well as its related flaviviruses causing Zika and Dengue fever, is treated only by symptomatic treatment, as there are no specific drugs. An international team of scientists used artificial intelligence to select from a vast array of molecules that might be suitable for this purpose. Scientists from the Research Centre of Biotechnology of the Russian Academy of Sciences developed the technology and purchased or synthesized five of the most promising compounds and investigated their activity. The research was conducted in cooperation with Collaborations Pharmaceuticals, Inc. a private company specializing in innovative therapeutics for multiple rare and infectious diseases (based in the USA), São Carlos Institute of Physics, University of São Paulo (Brazil) along with support from the NIH, NIAID (USA).

"Our team used a predictive computer model in combination with several machine learning methods. For model training, we relied on in vitro screening data and information available in existing databases to select identify the ideal molecule features for desired activity. With the help of these computational models we predicted their bioactivity before testing them in vitro using NIAID resources," - explains Vadim Makarov, the co-author, Dr.Sci. (Pharmacy), the head of the Laboratory for Biomedicinal Chemistry of Research Centre of Biotechnology RAS.

Typically, only one of the 5,000 molecules that survived experimental testing is given a chance to reach the pharmacy counter. Others are too toxic, hard to produce, disintegrate in the body, or show too little activity in the real body compared to the test tube. Selection is even more rigorous before the experiments. Even if you focus on the hundreds of thousands of molecules that are known to science that are used or used to treat something else, testing them all not the same on animals and humans, but even in vitro would be almost infinite. To make the first stages of experiments cheaper and faster, scientists use computer simulations and try to convert some of the initial tests into virtual ones. In the next stage, they are also assisted by high-throughput screening, during which "the robot dispenser" automatically dispenses tiny amounts of active substances into the microplates that contain cells infected with virus. The researcher then evaluates which compounds kill the virus.

The authors of the paper created computer models that can self-learn, comparing chemical compounds according to certain structural rules. Machine learning requires as much basic information from molecules wit or without activity as possible. For this purpose, scientists took information from public databases on small medicinal molecules and studied scientific publications on yellow fever virus research on cells. The models helped propose five of the most promising molecules that would fight the virus in human cells. Scientists have then tested these molecules and found the optimal concentration at which they should work. For the most efficient substance, the half-maximal effective concentration was 3.2 uM (equal to one mole of active substance per liter).

"The molecule we choose relates to the derivatives of pyrazosulphonamide. Its activity with the yellow fever virus is so great that we can talk about a potential drug. The structure of this molecule provides ample opportunity for further modification, which could greatly expand the list of potentially affordable yellow fever drugs. If the tests are successful, we will receive an entirely new group of drugs to fight this dangerous disease," - says Vadim Makarov.

Gawriljuk VO, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS, Oliva G, Ekins S.
Development of Machine Learning Models and the Discovery of a New Antiviral Compound against Yellow Fever Virus.
J Chem Inf Model. 2021 Aug 23;61(8):3804-3813. doi: 10.1021/acs.jcim.1c00460

Most Popular Now

Two Leading CIOs Join the Highland Marke…

Two of the NHS' most dynamic chief information officers have joined Highland Marketing’s advisory board of NHS IT professionals and health tech industry experts. Ian Hogan, a CIO at the Northern...

Using Technology to Support Primary Care

Opinion Article by Paul Bensley, Managing Director of Primary Care Cloud Telephony Specialist X-on. It is good to see the publication of this strategy [A plan for digital health and social...

Building the Right Foundations to Delive…

Opinion Article by Gary Birks, Gary Birks, General Manager, UK and Ireland, Orion Health. The latest strategy for health and care IT looks to build on what has been achieved over...

Teaching AI to Ask Clinical Questions

Physicians often query a patient's electronic health record for information that helps them make treatment decisions, but the cumbersome nature of these records hampers the process. Research has shown that...

Virtual Reality App Trial Shown to Reduc…

Results from a University of Otago, Christchurch trial suggest fresh hope for the estimated one-in-twelve people worldwide suffering from a fear of flying, needles, heights, spiders and dogs. The trial, led...

MIT Engineers Develop Stickers that can …

Ultrasound imaging is a safe and noninvasive window into the body’s workings, providing clinicians with live images of a patient’s internal organs. To capture these images, trained technicians manipulate ultrasound...

AI Analyses Neuron Changes to Detect whe…

A research group from Nagoya University in Japan has developed an artificial intelligence (AI) for analyzing cell images that uses machine learning to predict the therapeutic effect of drugs. Called...

Patient Deterioration Predictor could Su…

An artificial intelligence-driven device that works to detect and predict hemodynamic instability may provide a more accurate picture of patient deterioration than traditional vital sign measurements, a Michigan Medicine study...

Interoperability with Open Standards: Le…

Opinion Article by Vivek Krishnan, CTO, Alcidion Group. The future of healthcare systems lies in open standards that free data from traditional, stand-alone silos and make it available to the many...

Advancing Dynamic Brain Imaging with AI

MRI, electroencephalography (EEG) and magnetoencephalography have long served as the tools to study brain activity, but new research from Carnegie Mellon University introduces a novel, AI-based dynamic brain imaging technology...

Open Call HORIZON-EIC-2022-PATHFINDERCHA…

Current technologies for digital data storage are hitting sustainability limits in terms of energy consumption and their use of rare and toxic materials. Moreover, data integrity when using those technologies...

NHS Trust Dramatically Reduces Acute Kid…

A condition linked to thousands of UK deaths has been significantly reduced by healthcare professionals at County Durham and Darlington NHS Foundation Trust, with the help of a new care...