Scientists Synthesized a Yellow Fever Drug Suggested by AI

Yellow fever is a deadly disease in overpopulated tropical regions of Africa and South America. Infected people have a temperature increase to 39-41°C, chills, severe headache, nausea, and vomiting. The patient’s face becomes dull, the eyelids swell and the skin turns yellow due to liver damage (hence the name of the disease). Before the yellow fever vaccine was developed, the infection claimed thousands of lives for example in 1871, 8 percent of the population of Buenos Aires died in the epidemic. In mosquito-infested areas, where the vaccination is not readily available to the majority of the population, outbreaks of infection still occur. The yellow fever virus, as well as its related flaviviruses causing Zika and Dengue fever, is treated only by symptomatic treatment, as there are no specific drugs. An international team of scientists used artificial intelligence to select from a vast array of molecules that might be suitable for this purpose. Scientists from the Research Centre of Biotechnology of the Russian Academy of Sciences developed the technology and purchased or synthesized five of the most promising compounds and investigated their activity. The research was conducted in cooperation with Collaborations Pharmaceuticals, Inc. a private company specializing in innovative therapeutics for multiple rare and infectious diseases (based in the USA), São Carlos Institute of Physics, University of São Paulo (Brazil) along with support from the NIH, NIAID (USA).

"Our team used a predictive computer model in combination with several machine learning methods. For model training, we relied on in vitro screening data and information available in existing databases to select identify the ideal molecule features for desired activity. With the help of these computational models we predicted their bioactivity before testing them in vitro using NIAID resources," - explains Vadim Makarov, the co-author, Dr.Sci. (Pharmacy), the head of the Laboratory for Biomedicinal Chemistry of Research Centre of Biotechnology RAS.

Typically, only one of the 5,000 molecules that survived experimental testing is given a chance to reach the pharmacy counter. Others are too toxic, hard to produce, disintegrate in the body, or show too little activity in the real body compared to the test tube. Selection is even more rigorous before the experiments. Even if you focus on the hundreds of thousands of molecules that are known to science that are used or used to treat something else, testing them all not the same on animals and humans, but even in vitro would be almost infinite. To make the first stages of experiments cheaper and faster, scientists use computer simulations and try to convert some of the initial tests into virtual ones. In the next stage, they are also assisted by high-throughput screening, during which "the robot dispenser" automatically dispenses tiny amounts of active substances into the microplates that contain cells infected with virus. The researcher then evaluates which compounds kill the virus.

The authors of the paper created computer models that can self-learn, comparing chemical compounds according to certain structural rules. Machine learning requires as much basic information from molecules wit or without activity as possible. For this purpose, scientists took information from public databases on small medicinal molecules and studied scientific publications on yellow fever virus research on cells. The models helped propose five of the most promising molecules that would fight the virus in human cells. Scientists have then tested these molecules and found the optimal concentration at which they should work. For the most efficient substance, the half-maximal effective concentration was 3.2 uM (equal to one mole of active substance per liter).

"The molecule we choose relates to the derivatives of pyrazosulphonamide. Its activity with the yellow fever virus is so great that we can talk about a potential drug. The structure of this molecule provides ample opportunity for further modification, which could greatly expand the list of potentially affordable yellow fever drugs. If the tests are successful, we will receive an entirely new group of drugs to fight this dangerous disease," - says Vadim Makarov.

Gawriljuk VO, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS, Oliva G, Ekins S.
Development of Machine Learning Models and the Discovery of a New Antiviral Compound against Yellow Fever Virus.
J Chem Inf Model. 2021 Aug 23;61(8):3804-3813. doi: 10.1021/acs.jcim.1c00460

Most Popular Now

Digital Health Webinar

14 September 2021, Webinar. The digital healthcare ecosystem is evolving with rapid speed. Technologies such as AI, robotics, telemedicine, and precision medicine are a mix of challenges and opportunities...

Using AI for Early Detection and Treatme…

Artificial intelligence (AI) will fundamentally change medicine and healthcare: Diagnostic patient data, e.g. from ECG, EEG or X-ray images, can be analyzed with the help of machine learning, so that...

Waiting Times for Medical Admissions Red…

Clinicians at Bolton NHS Foundation Trust have dramatically reduced patient waiting times, decreased hospital length of stay and improved patient safety after developing an electronic acute medical list solution to manage patient referrals.  The configuration was initially set-up to track referrals and admissions...

AI Algorithm Solves Structural Biology C…

Determining the 3D shapes of biological molecules is one of the hardest problems in modern biology and medical discovery. Companies and research institutions often spend millions of dollars to determine...

Novel AI Blood Testing Technology can ID…

A novel artificial intelligence blood testing technology developed by researchers at the Johns Hopkins Kimmel Cancer Center was found to detect over 90% of lung cancers in samples from nearly...

Accenture HealthTech Innovation Challeng…

Accenture (NYSE: ACN) has named eight companies as finalists in the Accenture HealthTech Innovation Challenge, which brings together leading-edge startups with prominent health companies to tackle some of North America's...

Clinerion Patent for Technology Underpin…

The new Clinerion patent underpins any medical EHR database infrastructure that incorporates a hybrid model of cloud-and-local server node installations at individual hospitals, as well as any method for search...

Data MATRIX Introduces an AI-Operated Pa…

Data MATRIX, a sole Real-World Evidence solutions provider in Russia, has presented a predictive analytics tool for estimating patient survival based on Real-World Data. An important feature of the presented tool for...

Researchers Use AI to Predict which COVI…

Researchers at Case Western Reserve University have developed an online tool to help medical staff quickly determine which COVID-19 patients will need help breathing with a ventilator. The tool, developed through...

A Game Changer: Virtual Reality Reduces …

It isn’t a matter of one needle puncture. Many children coming through the doors of Children's Hospital Los Angeles are seen for chronic conditions and often require frequent visits. Painful...

Bittium Expands Its Minority Holdings in…

Bittium Biosignals Ltd, a subsidiary of Bittium Corporation, and British ECG service provider, Technomed Limited, have today signed an agreement under which Bittium will purchase a 25 percent stake in...

Scientists Develop AI to Predict the Suc…

A study in which machine-learning models were trained to assess over 1 million companies has shown that artificial intelligence (AI) can accurately determine whether a startup firm will fail or...