Using Artificial Intelligence to Overcome Mental Health Stigma

Depression is a worldwide problem, with serious consequences for individual health and the economy, and rapid and effective screening tools are thus urgently needed to counteract its increasing prevalence. Now, researchers from Japan have found that artificial intelligence (AI) can be used to detect signs of depression.

In a study published this month in BMJ Open, researchers from University of Tsukuba have revealed that an AI system using machine learning could predict psychological distress among workers, which is a risk factor for depression.

Although many questionnaires exist that screen for mental health conditions, individuals may be hesitant to answer truthfully questions about subjective mood due to social stigma regarding mental health. However, a machine learning system could be used to screen depression/psychological distress without such data, something the researchers at University of Tsukuba aimed to address.

"We wanted to see if the AI system could detect psychological distress in a large population from sociodemographic, lifestyle, and sleep factors, without data about subjective states, such as mood," says lead author of the study Professor Shotaro Doki.

To investigate this, the researchers asked a group of researchers and office workers to complete an online survey about sociodemographic, lifestyle, and sleep factors. Then, they developed an AI model that predicted psychological distress according to data from 7251 participants, and compared the results obtained from the AI model with predictions made by a team of 6 psychiatrists.

"The results were surprising," explains Professor Doki. "We found that even without data about mood, the AI model and the team of psychiatrists produced similar predictions regarding moderate psychological distress."

Furthermore, for participants with severe psychological distress, the predictions made by the AI model were more accurate than the predictions of the psychiatrists.

"This newly developed model appears to easily be able to predict psychological distress among large numbers of workers, without data regarding their subjective mood," says Professor Doki. "This effectively avoids the issue of social stigma concerning mental health in the workplace, and eliminates the risk of inappropriate responses to questions asking about respondents' mood."

Thus, screening tools that do not require individuals to report their subjective mood may be more accurate, and thus better able to identify individuals who would not otherwise receive treatment. Earlier interventions to treat depression and psychological distress are likely to lessen the severity of mental illness, with important benefits for both individuals and society.

Doki S, Sasahara S, Hori D, Oi Y, Takahashi T, Shiraki N, Ikeda Y, Ikeda T, Arai Y, Muroi K, Matsuzaki I.
Comparison of predicted psychological distress among workers between artificial intelligence and psychiatrists: a cross-sectional study in Tsukuba Science City, Japan.
BMJ Open. 2021 Jun 23;11(6):e046265. doi: 10.1136/bmjopen-2020-046265

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...