Grand Challenge Research Harnesses AI to Fight Breast Cancer

Breast cancer has recently overtaken lung cancer to become the most common cancer globally, according to the World Health Organization. Advancing the fight against breast cancer, the BreastPathQ Challenge was launched at SPIE Medical Imaging 2019 to support the development of computer-aided diagnosis for assessing breast cancer pathology.

BreastPathQ Challenge participants were tasked with developing an automated method for analyzing microscopy images of breast tissue and ranking them according to their tumor cell content, to provide a reliable assessment score. As reported in SPIE's Journal of Medical Imaging (JMI), the challenge produced encouraging results that indicate a path toward integrating artificial intelligence (AI) to streamline clinical assessment of breast cancer.

Medical imaging for neoadjuvant treatment

Treatment for large or aggressive breast cancers has often turned to mastectomy as the most reliable therapy. However, therapy known as "neoadjuvant treatment" can result in reduced tumor size, density, and spread, making patients candidates for breast-conserving surgery rather than mastectomy.

Medical imaging allows doctors to assess the effects of neoadjuvant treatment. While the processes of analyzing medical images for cancer detection are typically performed manually and rely on expert interpretation of complex tissue structures, machine-learning algorithms for identifying cancer may increase the reliability and efficiency of those processes. In addition to reducing variability, which is inherent to human pathologists, fully automated methods like these are expected to increase the speed of image analysis.

Intensive focus, international effort

A total of 39 teams from 12 different countries worldwide engaged in the BreastPathQ Challenge. A total of 100 algorithms were developed, validated, and tested. Teams were able to compare their algorithms with those of others from academia, industry, and government, as structured by the Grand Challenge framework, which requires a shared set of source data.

Most of the teams used an ensemble of machine-learning algorithms instead of limiting themselves to a single AI architecture. Top algorithms performed at levels comparable to the pathologists who provided the reference standards for the study, and the best performing algorithm slightly surpassed the scores of the pathologists. The algorithms generally performed well on easier patches of images but struggled on the difficult patches - those for which AI would be especially beneficial to pathologists.

The BreastPathQ Challenge was successful because the organizing committee brought together experts in multiple fields. According to Nicholas Petrick, deputy director for the Division of Imaging, Diagnostics and Software Reliability in the US FDA Center for Devices and Radiological Health, and representative for the BreastPathQ Challenge Group, advance collaborative groundwork meant that participants were able to move quickly and efficiently to address the task, access the data set, and develop their algorithms.

Petrick N, Akbar S, Cha KH, Nofech-Mozes S, Sahiner B, Gavrielides MA, Kalpathy-Cramer J, Drukker K, Martel AL; BreastPathQ Challenge Group.
SPIE-AAPM-NCI BreastPathQ challenge: an image analysis challenge for quantitative tumor cellularity assessment in breast cancer histology images following neoadjuvant treatment.
J Med Imaging (Bellingham). 2021, doi: 10.1117/1.JMI.8.3.034501

Most Popular Now

AI Predicts Lung Cancer Risk

An artificial intelligence (AI) program accurately predicts the risk that lung nodules detected on screening CT will become cancerous, according to a study published in the journal Radiology. Lung cancer is...

EU Health Policy Platform Calls for Prop…

The European Commission is inviting public health stakeholders to submit initiatives for anew cycle of Thematic Networks under the EU Health Policy Platform. The purpose of a Thematic Network is...

What Next for Social Care?

Highland Marketing's advisory board welcomed Jane Brightman, social care lead at Institute of Health and Social Care Management, to discuss the sector and its technology needs. A lot of hope...

Philips Introduces the New Spectral Comp…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced its newest solution for precision diagnosis with the global introduction of its spectral detector-based Spectral Computed...

Web-Based System Developed to Give Care …

Black Country Pathology Services has worked with CliniSys to create the ICE Portal, a web-based application that makes it easy for care homes, or other community care settings, to be...

Grand Challenge Research Harnesses AI to…

Breast cancer has recently overtaken lung cancer to become the most common cancer globally, according to the World Health Organization. Advancing the fight against breast cancer, the BreastPathQ Challenge was...

UCSF Improves Fetal Heart Defect Detecti…

UC San Francisco researchers have found a way to double doctors' accuracy in detecting the vast majority of complex fetal heart defects in utero - when interventions could either correct...

EU4Health Programme: Regulation (EU) 202…

The Programme should be a means of promoting actions in areas where there is a Union added value that can be demonstrated. Such actions should include, inter alia, strengthening...

MEDICA 2021 + COMPAMED 2021: Medical Tec…

15 - 18 November 2021, Düsseldorf, Germany. The date for the globally leading live platforms for the medical technology industry remains a fixed feature in everybody's calendar this year too. The...

New AI Technology Protects Privacy

Digital medicine is opening up entirely new possibilities. For example, it can detect tumors at an early stage. But the effectiveness of new AI algorithms depends on the quantity and...

GP use of Tech Helps Prevent Prescribing…

Academic analysis shows primary care prescribers have been preventing adverse drug reactions, harm and hospital admissions through safer prescribing, after using prescribing tech. The company behind the system also reveals...