Researchers Develop Better Way to Determine Safe Drug Doses for Children

Determining safe yet effective drug dosages for children is an ongoing challenge for pharmaceutical companies and medical doctors alike. A new drug is usually first tested on adults, and results from these trials are used to select doses for pediatric trials. The underlying assumption is typically that children are like adults, just smaller, which often holds true, but may also overlook differences that arise from the fact that children's organs are still developing.

Compounding the problem, pediatric trials don't always shed light on other differences that can affect recommendations for drug doses. There are many factors that limit children's participation in drug trials - for instance, some diseases simply are rarer in children - and consequently, the generated datasets tend to be very sparse.

To make drugs and their development safer for children, researchers at Aalto University and the pharmaceutical company Novartis have developed a method that makes better use of available data.

"This is a method that could help determine safe drug doses more quickly and with less observations than before," says co-author Aki Vehtari, an associate professor of computer science at Aalto University and the Finnish Center for Artificial Intelligence FCAI.

In their study, the research team created a model that improves our understanding of how organs develop.

"The size of an organ is not necessarily the only thing that affects its performance. Kids' organs are simply not as efficient as those of adults. In drug modeling, if we assume that size is the only thing that matters, we might end up giving too large of doses," explains Eero Siivola, first author of the study and doctoral student at Aalto University.

Whereas the standard approach of assessing pediatric data relies on subjective evaluations of model diagnostics, the new approach, based on Gaussian process regression, is more data-driven and consequently less prone to bias. It is also better at handling small sample sizes as uncertainties are accounted for.

The research comes out of FCAI's research programme on Agile and probabilistic AI, offering a great example of a method that makes the best out of even very scarce datasets.

In the study, the researchers demonstrate their approach by re-analyzing a pediatric trial investigating Everolimus, a drug used to prevent the rejection of organ transplants. But the possible benefits of their method are far reaching.

"It works for any drug whose concentration we want to examine," Vehtari says, like allergy and pain medication.

The approach could be particularly useful for situations where a new drug is tested on a completely new group - of children or adults - which is small in size, potentially making the trial phase much more efficient than it currently is. Another promising application relates to extending use of an existing drug to other symptoms or diseases; the method could support this process more effectively than current practices.

Siivola E, Weber S, Vehtari A.
Qualifying drug dosing regimens in pediatrics using Gaussian processes.
Stat Med. 2021 May 10;40(10):2355-2372. doi: 10.1002/sim.8907

Most Popular Now

AI Predicts Lung Cancer Risk

An artificial intelligence (AI) program accurately predicts the risk that lung nodules detected on screening CT will become cancerous, according to a study published in the journal Radiology. Lung cancer is...

EU Health Policy Platform Calls for Prop…

The European Commission is inviting public health stakeholders to submit initiatives for anew cycle of Thematic Networks under the EU Health Policy Platform. The purpose of a Thematic Network is...

What Next for Social Care?

Highland Marketing's advisory board welcomed Jane Brightman, social care lead at Institute of Health and Social Care Management, to discuss the sector and its technology needs. A lot of hope...

Philips Introduces the New Spectral Comp…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced its newest solution for precision diagnosis with the global introduction of its spectral detector-based Spectral Computed...

Web-Based System Developed to Give Care …

Black Country Pathology Services has worked with CliniSys to create the ICE Portal, a web-based application that makes it easy for care homes, or other community care settings, to be...

Grand Challenge Research Harnesses AI to…

Breast cancer has recently overtaken lung cancer to become the most common cancer globally, according to the World Health Organization. Advancing the fight against breast cancer, the BreastPathQ Challenge was...

UCSF Improves Fetal Heart Defect Detecti…

UC San Francisco researchers have found a way to double doctors' accuracy in detecting the vast majority of complex fetal heart defects in utero - when interventions could either correct...

EU4Health Programme: Regulation (EU) 202…

The Programme should be a means of promoting actions in areas where there is a Union added value that can be demonstrated. Such actions should include, inter alia, strengthening...

MEDICA 2021 + COMPAMED 2021: Medical Tec…

15 - 18 November 2021, Düsseldorf, Germany. The date for the globally leading live platforms for the medical technology industry remains a fixed feature in everybody's calendar this year too. The...

New AI Technology Protects Privacy

Digital medicine is opening up entirely new possibilities. For example, it can detect tumors at an early stage. But the effectiveness of new AI algorithms depends on the quantity and...

GP use of Tech Helps Prevent Prescribing…

Academic analysis shows primary care prescribers have been preventing adverse drug reactions, harm and hospital admissions through safer prescribing, after using prescribing tech. The company behind the system also reveals...