Researchers Develop Better Way to Determine Safe Drug Doses for Children

Determining safe yet effective drug dosages for children is an ongoing challenge for pharmaceutical companies and medical doctors alike. A new drug is usually first tested on adults, and results from these trials are used to select doses for pediatric trials. The underlying assumption is typically that children are like adults, just smaller, which often holds true, but may also overlook differences that arise from the fact that children's organs are still developing.

Compounding the problem, pediatric trials don't always shed light on other differences that can affect recommendations for drug doses. There are many factors that limit children's participation in drug trials - for instance, some diseases simply are rarer in children - and consequently, the generated datasets tend to be very sparse.

To make drugs and their development safer for children, researchers at Aalto University and the pharmaceutical company Novartis have developed a method that makes better use of available data.

"This is a method that could help determine safe drug doses more quickly and with less observations than before," says co-author Aki Vehtari, an associate professor of computer science at Aalto University and the Finnish Center for Artificial Intelligence FCAI.

In their study, the research team created a model that improves our understanding of how organs develop.

"The size of an organ is not necessarily the only thing that affects its performance. Kids' organs are simply not as efficient as those of adults. In drug modeling, if we assume that size is the only thing that matters, we might end up giving too large of doses," explains Eero Siivola, first author of the study and doctoral student at Aalto University.

Whereas the standard approach of assessing pediatric data relies on subjective evaluations of model diagnostics, the new approach, based on Gaussian process regression, is more data-driven and consequently less prone to bias. It is also better at handling small sample sizes as uncertainties are accounted for.

The research comes out of FCAI's research programme on Agile and probabilistic AI, offering a great example of a method that makes the best out of even very scarce datasets.

In the study, the researchers demonstrate their approach by re-analyzing a pediatric trial investigating Everolimus, a drug used to prevent the rejection of organ transplants. But the possible benefits of their method are far reaching.

"It works for any drug whose concentration we want to examine," Vehtari says, like allergy and pain medication.

The approach could be particularly useful for situations where a new drug is tested on a completely new group - of children or adults - which is small in size, potentially making the trial phase much more efficient than it currently is. Another promising application relates to extending use of an existing drug to other symptoms or diseases; the method could support this process more effectively than current practices.

Siivola E, Weber S, Vehtari A.
Qualifying drug dosing regimens in pediatrics using Gaussian processes.
Stat Med. 2021 May 10;40(10):2355-2372. doi: 10.1002/sim.8907

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...