Artificial Intelligence Model Predicts which Key of the Immune System Opens the Locks of Coronavirus

The human immune defense is based on the ability of white blood cells to accurately identify disease-causing pathogens and to initiate a defense reaction against them. The immune defense is able to recall the pathogens it has encountered previously, on which, for example, the effectiveness of vaccines is based. Thus, the immune defense the most accurate patient record system that carries a history of all pathogens an individual has faced. This information however has previously been difficult to obtain from patient samples.

The learning immune system can be roughly divided into two parts, of which B cells are responsible for producing antibodies against pathogens, while T cells are responsible for destroying their targets. The measurement of antibodies by traditional laboratory methods is relatively simple, which is why antibodies already have several uses in healthcare.

"Although it is known that the role of T cells in the defense response against for example viruses and cancer is essential, identifying the targets of T cells has been difficult despite extensive research," says Satu Mustjoki, Professor of Translational Hematology.

AI helps to identify new key-lock pairs

T cells identify their targets in a key and a lock principle, where the key is the T cell receptor on the surface of the T cell and the key is the protein presented on the surface of an infected cell. An individual is estimated to carry more different T cell keys than there are stars in the Milky Way, making the mapping of T cell targets with laboratory techniques cumbersome.

Researchers at Aalto University and the University of Helsinki have therefore studied previously profiled key-lock pairs and were able to create an AI model that can predict targets for previously unmapped T cells.

"The AI model we created is flexible and is applicable to every possible pathogen - as long as we have enough experimentally produced key-lock pairs. For example, we were quickly able to apply our model to coronavirus SARS-CoV-2 when a sufficient number of such pairs were available," explains Emmi Jokinen, M.Sc. and a Ph.D. student at Aalto University.

The results of the study help us to understand how a T cell applies different parts of its key to identify its locks. The researchers studied which T cells recognize common viruses such as influenza-, HI-, and hepatitis B -virus. The researchers also used their tool to analyze the role of T-cells recognizing hepatitis B, which had lost their killing ability after the progression of hepatitis to hepatic cell cancer.

The study has been published in the scientific journal PLOS Computational Biology.

A new life for published data with novel AI models

Tools generated by AI are cost-effective research topics.

"With the help of these tools, we are able to make better use of the already published vast patient cohorts and gain additional understanding of them," points out Harri Lähdesmäki, Professor of Computational Biology and Machine Learning at Aalto University.

Using the artificial intelligence tool, the researchers have figured out, among other things, how the intensity of the defense reaction relates to its target in different disease states, which would not have been possible without this study.

"For example, in addition to COVID19 infection, we have investigated the role of the defense system in the development of various autoimmune disorders and explained why some cancer patients benefit from new drugs and some do not", reveals M.D. Jani Huuhtanen, a Ph.D. student at the University of Helsinki, about the upcoming work with the new model.

Jokinen E, Huuhtanen J, Mustjoki S, Heinonen M, Lähdesmäki H.
Predicting recognition between T cell receptors and epitopes with TCRGP.
PLoS Comput Biol, 2021. doi: 10.1371/journal.pcbi.1008814

Most Popular Now

CSAM Acquires Optima - Further Boosts eH…

CSAM Health Group AS ("CSAM"), the leading provider of niche eHealth solutions in the Nordics, today announced it has signed a deal to acquire eHealth player Optima Corporation Ltd from...

Using Artificial Intelligence to Overcom…

Depression is a worldwide problem, with serious consequences for individual health and the economy, and rapid and effective screening tools are thus urgently needed to counteract its increasing prevalence. Now...

EU Digital COVID Certificate Enters into…

The EU Digital COVID Certificate Regulation enters into application. This means that EU citizens and residents will now be able to have their Digital COVID Certificates issued and verified across...

Deep Machine Learning Completes Informat…

The Structural Bioinformatics and Network Biology laboratory, led by ICREA Researcher Dr. Patrick Aloy, has completed the bioactivity information for a million molecules using deep machine-learning computational models. It has...

Scottish Health and Care Professionals G…

Scottish health and care professionals across a wide range of clinical settings including NHS Scotland health boards are being given access to an individual's COVID-19 vaccine status through the Orion...

Philips and the Spanish National Center …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, has participated in an important research project to develop a magnetic resonance (MR) imaging technique [1,2] that could...

Ethics and Governance of Artificial Inte…

Artificial Intelligence (AI) refers to the ability of algorithms encoded in technology to learn from data so that they can perform automated tasks without every step in the process having...

It's Going to be Quite a Handover…

Health and social care secretary Matt Hancock has been abruptly replaced by Sajid Javid. The Highland Marketing advisory board consider the huge agenda he is now facing, and what it...

Philips Accelerates Stroke Diagnosis and…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced a strategic partnership agreement with NICO.LAB, a MedTech stroke care company. Together with the recently expanded stroke...

Open Call HORIZON-HLTH-2021-TOOL-06-01: …

This topic aims at supporting activities that are enabling or contributing to one or several expected impacts of destination 5 "Unlocking the full potential of new tools, technologies and digital...

Exscientia Accelerates COVID-19 Drug Dis…

Exscientia has received a grant from the Bill & Melinda Gates Foundation and Gates Philanthropy Partners, as part of the COVID-19 Therapeutics Accelerator. This is to expedite the optimisation of...

Smartphone Photos can be Used to Detect …

A picture of a person's inner eyelid taken with a standard smartphone camera can be used to screen for anemia, according to a new study published this week in the...