Using AI to Assess Surgical Performance

More than one million operations are performed in Switzerland every year. A surgeon's skill has a direct impact on the outcome of the operation. Training and experience, as well as momentary fatigue and other influencing factors all play a role. At present, skill is tested by experts, either directly during an operation or by evaluating video footage. This approach is very costly and only a limited number of experts are available. Moreover, the assessment may vary and is not always fully reproducible. For some time, attempts have been made to automate and objectify the assessment of surgeons' skills.

Proof of feasibility

The key result of the study is the proof of the fundamental feasibility of an artificial intelligence (AI)-based assessment of a surgeon's skill in the context of a surgical procedure. The AI used in the study identified good or moderate surgical skill with 87 percent accuracy. This can be considered a very good finding. Lead author Joël Lavanchy explains: "What was surprising was the high degree of algorithms' accuracy with the selected method. Our method of assessing surgical skills is based on the analysis of instrument movement. Surgical instruments were identified using computer algorithms and their movement was analyzed during the time period."

Innovative, three-stage approach with AI

The research team used a newly developed, three-stage approach. The study was based on 242 videos of laparoscopic gallbladder removal procedures. The first step was to identify the instruments used. For this purpose, a convolutional neural network (CNN) was trained to recognize the instruments. In the second step, the movements were analyzed, and their patterns were extracted. In the third step, the extracted movement patterns correlated with rating results by experts using linear regression.

Broader database and in-depth training of algorithms is needed

The present study is an important first step towards assessing surgical performance. More in-depth steps are needed before the technology can be used in clinical practice. For one thing, the AI algorithms need to be trained on a broader database to further improve instrument recognition. For another thing, additional surgeries need to be investigated and, in the medium term, videos of open surgeries as well as procedures apart from the abdominal area can be addressed.

Dr. Enes Hosgor, a co-author of the study who leads the AI division at caresyntax, a medical technology company headquartered in Berlin and Boston, classifies the results as follows: "AI has mainly been used thus far to identify instruments or specific surgical phases. In our study, we now assess surgical skill based on surgical videos. In the future, the use of AI can solve problems at multiple levels: it is available on-demand peri-operatively (not dependent on a few hard-to-find experts); it is objective using algorithm-driven standards; it is comparable at a transregional level as well as surgeon level and could thus provide important support for decision-making processes at certification institutes."

AI at medical location in Bern: CAIM as an opportunity

The project provides an important indication of the future development of the use of AI in medicine. In the future, it will shift from the erstwhile evaluation of image material to the provision of expert systems. Prof. Guido Beldi, head of the study, clarifies: "The study is a first step. Now that we have demonstrated the fundamental feasibility, we can start planning assistance systems that will support surgeons during operations. For example, they will be alerted when fatigue is detected, thereby helping to prevent complications."

Lavanchy, J.L., Zindel, J., Kirtac, K. et al.
Automation of surgical skill assessment using a three-stage machine learning algorithm.
Sci Rep 11, 5197 (2021). doi: 10.1038/s41598-021-84295-6

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...