Using AI to Assess Surgical Performance

More than one million operations are performed in Switzerland every year. A surgeon's skill has a direct impact on the outcome of the operation. Training and experience, as well as momentary fatigue and other influencing factors all play a role. At present, skill is tested by experts, either directly during an operation or by evaluating video footage. This approach is very costly and only a limited number of experts are available. Moreover, the assessment may vary and is not always fully reproducible. For some time, attempts have been made to automate and objectify the assessment of surgeons' skills.

Proof of feasibility

The key result of the study is the proof of the fundamental feasibility of an artificial intelligence (AI)-based assessment of a surgeon's skill in the context of a surgical procedure. The AI used in the study identified good or moderate surgical skill with 87 percent accuracy. This can be considered a very good finding. Lead author Joël Lavanchy explains: "What was surprising was the high degree of algorithms' accuracy with the selected method. Our method of assessing surgical skills is based on the analysis of instrument movement. Surgical instruments were identified using computer algorithms and their movement was analyzed during the time period."

Innovative, three-stage approach with AI

The research team used a newly developed, three-stage approach. The study was based on 242 videos of laparoscopic gallbladder removal procedures. The first step was to identify the instruments used. For this purpose, a convolutional neural network (CNN) was trained to recognize the instruments. In the second step, the movements were analyzed, and their patterns were extracted. In the third step, the extracted movement patterns correlated with rating results by experts using linear regression.

Broader database and in-depth training of algorithms is needed

The present study is an important first step towards assessing surgical performance. More in-depth steps are needed before the technology can be used in clinical practice. For one thing, the AI algorithms need to be trained on a broader database to further improve instrument recognition. For another thing, additional surgeries need to be investigated and, in the medium term, videos of open surgeries as well as procedures apart from the abdominal area can be addressed.

Dr. Enes Hosgor, a co-author of the study who leads the AI division at caresyntax, a medical technology company headquartered in Berlin and Boston, classifies the results as follows: "AI has mainly been used thus far to identify instruments or specific surgical phases. In our study, we now assess surgical skill based on surgical videos. In the future, the use of AI can solve problems at multiple levels: it is available on-demand peri-operatively (not dependent on a few hard-to-find experts); it is objective using algorithm-driven standards; it is comparable at a transregional level as well as surgeon level and could thus provide important support for decision-making processes at certification institutes."

AI at medical location in Bern: CAIM as an opportunity

The project provides an important indication of the future development of the use of AI in medicine. In the future, it will shift from the erstwhile evaluation of image material to the provision of expert systems. Prof. Guido Beldi, head of the study, clarifies: "The study is a first step. Now that we have demonstrated the fundamental feasibility, we can start planning assistance systems that will support surgeons during operations. For example, they will be alerted when fatigue is detected, thereby helping to prevent complications."

Lavanchy, J.L., Zindel, J., Kirtac, K. et al.
Automation of surgical skill assessment using a three-stage machine learning algorithm.
Sci Rep 11, 5197 (2021). doi: 10.1038/s41598-021-84295-6

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...