Wearable Devices can Detect COVID-19 Symptoms and Predict Diagnosis

Wearable devices can identify COVID-19 cases earlier than traditional diagnostic methods and can help track and improve management of the disease, Mount Sinai researchers report in one of the first studies on the topic. The findings were published in the Journal of Medical Internet Research on January 29.

The Warrior Watch Study found that subtle changes in a participant's heart rate variability (HRV) measured by an Apple Watch were able to signal the onset of COVID-19 up to seven days before the individual was diagnosed with the infection via nasal swab, and also to identify those who have symptoms.

"This study highlights the future of digital health," says the study's corresponding author Robert P. Hirten, MD, Assistant Professor of Medicine (Gastroenterology) at the Icahn School of Medicine at Mount Sinai, and member of the Hasso Plattner Institute for Digital Health at Mount Sinai and the Mount Sinai Clinical Intelligence Center (MSCIC). "It shows that we can use these technologies to better address evolving health needs, which will hopefully help us improve the management of disease. Our goal is to operationalize these platforms to improve the health of our patients and this study is a significant step in that direction. Developing a way to identify people who might be sick even before they know they are infected would be a breakthrough in the management of COVID-19."

The researchers enrolled several hundred health care workers throughout the Mount Sinai Health System in an ongoing digital study between April and September 2020. The participants wore Apple Watches and answered daily questions through a customized app. Changes in their HRV--a measure of nervous system function detected by the wearable device--were used to identify and predict whether the workers were infected with COVID-19 or had symptoms. Other daily symptoms that were collected included fever or chills, tiredness or weakness, body aches, dry cough, sneezing, runny nose, diarrhea, sore throat, headache, shortness of breath, loss of smell or taste, and itchy eyes.

Additionally, the researchers found that 7 to 14 days after diagnosis with COVID-19, the HRV pattern began to normalize and was no longer statistically different from the patterns of those who were not infected.

"This technology allows us not only to track and predict health outcomes, but also to intervene in a timely and remote manner, which is essential during a pandemic that requires people to stay apart," says the study's co-author Zahi Fayad, PhD, Director of the BioMedical Engineering and Imaging Institute, Co-Founder of the MSCIC, and the Lucy G. Moses Professor of Medical Imaging and Bioengineering at the Icahn School of Medicine at Mount Sinai.

The Warrior Watch Study draws on the collaborative effort of the Hasso Plattner Institute for Digital Health and the MSCIC, which represents a diverse group of data scientists, engineers, clinical physicians, and researchers across the Mount Sinai Health System who joined together in the spring of 2020 to combat COVID-19. The study will next take a closer look at biometrics including HRV, sleep disruption, and physical activity to better understand which health care workers are at risk of the psychological effects of the pandemic.

Hirten RP, Danieletto M, Tomalin L, Choi KH, Zweig M, Golden E, Kaur S, Helmus D, Biello A, Pyzik R, Charney A, Miotto R, Glicksberg BS, Levin M, Nabeel I, Aberg J, Reich D, Charney D, Bottinger EP, Keefer L, Suarez-Farinas M, Nadkarni GN, Fayad ZA.
Physiological Data from a Wearable Device Identifies SARS-CoV-2 Infection and Symptoms and Predicts COVID-19 Diagnosis: Observational Study.
Journal of Medical Internet Research, 2021. doi: 10.2196/26107

Most Popular Now

Early Warning System for Intensive Care …

Life-threatening situations occur time and again in an intensive care unit. To make sure that doctors can intervene in time, a team at the German Heart Center Berlin (DHZB) has...

Philips Partners with Orbita to Develop …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Orbita Inc., an innovative provider of conversational artificial intelligence (AI) solutions for healthcare, announced a partnership agreement...

CliniSys Group Creates Single Brand for …

CliniSys Group has created a single brand for its businesses in the UK and Europe, with a refreshed logo and a new website. The move creates a unified identity for CliniSys...

East Lancashire Signs Deal for Early War…

Thousands of NHS professionals across five hospitals in East Lancashire are to benefit from early warning technology that will help them detect and swiftly respond to deteriorating patients in need...

FDA Grants Oxehealth Vital Signs De Novo…

Oxehealth has announced another world first after the US Food and Drug Administration granted a De Novo clearance for its Oxehealth Vital Signs product, which is incorporated into Oxevision, the...

Telemedicine Improves Access to High-Qua…

The American Academy of Sleep Medicine recently published an update on the use of telemedicine for the diagnosis and treatment of sleep disorders to reflect lessons learned from the transition...

Philips and NHS Implement the First Regi…

Royal Philips (NYSE: PHG, AEX: PHIA), announced it has supported the NHS' Cheshire and Merseyside consortium [1] to become the first regional hub supplying the United Kingdom's National COVID-19 Chest...

AI could Crack the Language of Cancer an…

Powerful algorithms used by Netflix, Amazon and Facebook can 'predict' the biological language of cancer and neurodegenerative diseases like Alzheimer's, scientists have found.

DMEA 2021: Digital Health. 100 % Virtual…

7 - 11 June 2021, Berlin, Germany. An entire week dominated by digital healthcare! With that in mind, early in June DMEA 2021 will be kicking off with a wide range...

X-Rays Combined with AI Offer Fast Diagn…

X-rays, first used clinically in the late 1890s, could be a leading-edge diagnostic tool for COVID-19 patients with the help of artificial intelligence, according to a team of researchers in...

Predicting COVID-19 Outbreaks with Cell …

Mobility tracking using cell phone data showing greater movement of people is a strong predictor of increased rates of COVID-19, according to new data in CMAJ (Canadian Medical Association Journal).