Researchers Develop Data Tool that may Improve Care

With the aid of sophisticated machine learning, researchers at UPMC and the University of Pittsburgh School of Medicine demonstrated that a tool they developed can rapidly predict mortality for patients facing transfer between hospitals in order to access higher-acuity care. This research, published today in PLOS One, could help physicians, patients and their families avoid unnecessary hospital transfers and low-value treatments, while better focusing on the goals of care expressed by patients.

Each year, nearly 1.6 million patients - or as much as 3.5% of all inpatient admissions - are transferred from one hospital to another to access specialized care for complex conditions. "However, securing these services often requires burdensome travel and reduced community support for patients and their families. While some may recover from the acute illness, many others realize little benefit in terms of improved outcomes," said Daniel E. Hall, M.D., corresponding author of the study, as well as medical director of high-risk populations and outcomes at the UPMC Wolff Center and associate professor of surgery at Pitt's School of Medicine.

To address this gap in the coordination of patient care, which currently relies on the ad hoc judgement of bedside clinicians, Hall and his team developed a real-time tool that can predict mortality outcomes for patients at the time of hospital transfer and deliver these results to physicians in less than five minutes.

Using data from nearly 21,000 patients aged 18 and older who were transferred to a UPMC hospital during a 12-month period, the researchers developed and validated a mortality risk-assessment tool dubbed "SafeNET" (Safe Nonelective Emergent Transfers). After studying other mortality risk models currently used in hospital intensive care unit and admission settings, Hall and his team constructed a list of 70 independent variables used in one or more of these models, including patient demographics, vital signs, lab tests and other factors.

They then analyzed UPMC billing data and inpatient electronic health records to determine if these variables were recorded by the receiving hospital and focused only on those available within three hours of transfer. That culled the list to 54 of the 70 variables. Using guided machine learning on both training and test sets of the data, the team ultimately developed their SafeNET algorithm composed of 14 variables that reliably and rapidly predict in-hospital, 30-day and 90-day mortality for transferred patients. They also compared SafeNET's predictive ability to another tool used for patients with infection--and found that the SafeNET algorithm was more accurate and could be used in a more general patient population.

"Our overarching goal was to provide much-needed information to front-line physicians to trigger and inform shared decisions about the highest risk patients," said Hall. "This tool could help to direct additional resources to these patients to ensure that the plan of care is consistent with the patient's values and goals. Frequently, transferred patients and their families don't understand the severity of the illness they are facing and have unrealistic expectations about the outcomes that a transfer for higher-level care will produce."

By piloting the tool in three hospitals within the UPMC system, the researchers built SafeNET as an easily accessible, web-based application. SafeNET guided users to enter as many of the variables as were immediately available and then generated a predicted mortality risk--doing so accurately even when at least one variable was missing, which occurred more than half the time.

Hall cautions that further work is needed before widely deploying SafeNET. Since the data were restricted to a single, multi-hospital system, the findings may not generalize to other care settings. And some of the information that feeds the algorithm may be subject to bias.

Work is ongoing at UPMC to build care pathways triggered by the SafeNET score that direct needed resources to patients at greatest risk of poor outcomes. For instance, the tool is being used in pilot studies to initiate goal-clarification conferences among clinicians contemplating a transfer between hospitals, and to deliver remote, video-conferenced palliative care services to patients being considered for transfer.

"SafeNET is not meant to supersede clinical judgement," Hall noted. "Instead, its intent is to trigger a 'pause' so that clinicians are better prepared to inform and guide patients and families, preferably before a critically ill patient is transferred. We know that patients or their surrogates who participate in conversations with physicians about their values tend to receive care that is consistent with their preferences. SafeNET may be an effective and inexpensive tool for facilitating those important conversations."

Stefanie C Altieri Dunn, Johanna E. Bellon, Andrew Bilderback, Jeffrey D Borrebach, Jacob C Hodges, Mary Kay Wisniewski, Matthew E Harinstein, Tamra E Minnier, Joel B Nelson, Daniel E Hall.
SafeNET: Initial development and validation of a real-time tool for predicting mortality risk at the time of hospital transfer to a higher level of care.
PLOS ONE, 2021. doi: 10.1371/journal.pone.0246669

Most Popular Now

Early Warning System for Intensive Care …

Life-threatening situations occur time and again in an intensive care unit. To make sure that doctors can intervene in time, a team at the German Heart Center Berlin (DHZB) has...

Philips Partners with Orbita to Develop …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Orbita Inc., an innovative provider of conversational artificial intelligence (AI) solutions for healthcare, announced a partnership agreement...

CliniSys Group Creates Single Brand for …

CliniSys Group has created a single brand for its businesses in the UK and Europe, with a refreshed logo and a new website. The move creates a unified identity for CliniSys...

East Lancashire Signs Deal for Early War…

Thousands of NHS professionals across five hospitals in East Lancashire are to benefit from early warning technology that will help them detect and swiftly respond to deteriorating patients in need...

FDA Grants Oxehealth Vital Signs De Novo…

Oxehealth has announced another world first after the US Food and Drug Administration granted a De Novo clearance for its Oxehealth Vital Signs product, which is incorporated into Oxevision, the...

Telemedicine Improves Access to High-Qua…

The American Academy of Sleep Medicine recently published an update on the use of telemedicine for the diagnosis and treatment of sleep disorders to reflect lessons learned from the transition...

Philips and NHS Implement the First Regi…

Royal Philips (NYSE: PHG, AEX: PHIA), announced it has supported the NHS' Cheshire and Merseyside consortium [1] to become the first regional hub supplying the United Kingdom's National COVID-19 Chest...

AI could Crack the Language of Cancer an…

Powerful algorithms used by Netflix, Amazon and Facebook can 'predict' the biological language of cancer and neurodegenerative diseases like Alzheimer's, scientists have found.

DMEA 2021: Digital Health. 100 % Virtual…

7 - 11 June 2021, Berlin, Germany. An entire week dominated by digital healthcare! With that in mind, early in June DMEA 2021 will be kicking off with a wide range...

X-Rays Combined with AI Offer Fast Diagn…

X-rays, first used clinically in the late 1890s, could be a leading-edge diagnostic tool for COVID-19 patients with the help of artificial intelligence, according to a team of researchers in...

Predicting COVID-19 Outbreaks with Cell …

Mobility tracking using cell phone data showing greater movement of people is a strong predictor of increased rates of COVID-19, according to new data in CMAJ (Canadian Medical Association Journal).