Using Artificial Intelligence to Find New Uses for Existing Medications

Scientists have developed a machine-learning method that crunches massive amounts of data to help determine which existing medications could improve outcomes in diseases for which they are not prescribed.

The intent of this work is to speed up drug repurposing, which is not a new concept - think Botox injections, first approved to treat crossed eyes and now a migraine treatment and top cosmetic strategy to reduce the appearance of wrinkles.

But getting to those new uses typically involves a mix of serendipity and time-consuming and expensive randomized clinical trials to ensure that a drug deemed effective for one disorder will be useful as a treatment for something else.

The Ohio State University researchers created a framework that combines enormous patient care-related datasets with high-powered computation to arrive at repurposed drug candidates and the estimated effects of those existing medications on a defined set of outcomes.

Though this study focused on proposed repurposing of drugs to prevent heart failure and stroke in patients with coronary artery disease, the framework is flexible - and could be applied to most diseases.

"This work shows how artificial intelligence can be used to 'test' a drug on a patient, and speed up hypothesis generation and potentially speed up a clinical trial," said senior author Ping Zhang, assistant professor of computer science and engineering and biomedical informatics at Ohio State. "But we will never replace the physician - drug decisions will always be made by clinicians."

The research is published in Nature Machine Intelligence.

Drug repurposing is an attractive pursuit because it could lower the risk associated with safety testing of new medications and dramatically reduce the time it takes to get a drug into the marketplace for clinical use.

Randomized clinical trials are the gold standard for determining a drug's effectiveness against a disease, but Zhang noted that machine learning can account for hundreds - or thousands - of human differences within a large population that could influence how medicine works in the body. These factors, or confounders, ranging from age, sex and race to disease severity and the presence of other illnesses, function as parameters in the deep learning computer algorithm on which the framework is based.

That information comes from "real-world evidence," which is longitudinal observational data about millions of patients captured by electronic medical records or insurance claims and prescription data.

"Real-world data has so many confounders. This is the reason we have to introduce the deep learning algorithm, which can handle multiple parameters," said Zhang, who leads the Artificial Intelligence in Medicine Lab and is a core faculty member in the Translational Data Analytics Institute at Ohio State. "If we have hundreds or thousands of confounders, no human being can work with that. So we have to use artificial intelligence to solve the problem.

"We are the first team to introduce use of the deep learning algorithm to handle the real-world data, control for multiple confounders, and emulate clinical trials," Zhang said.

The research team used insurance claims data on nearly 1.2 million heart-disease patients, which provided information on their assigned treatment, disease outcomes and various values for potential confounders. The deep learning algorithm also has the power to take into account the passage of time in each patient's experience - for every visit, prescription and diagnostic test. The model input for drugs is based on their active ingredients.

Applying what is called causal inference theory, the researchers categorized, for the purposes of this analysis, the active drug and placebo patient groups that would be found in a clinical trial. The model tracked patients for two years - and compared their disease status at that end point to whether or not they took medications, which drugs they took and when they started the regimen.

"With causal inference, we can address the problem of having multiple treatments. We don't answer whether drug A or drug B works for this disease or not, but figure out which treatment will have the better performance," Zhang said.

Their hypothesis: that the model would identify drugs that could lower the risk for heart failure and stroke in coronary artery disease patients.

The model yielded nine drugs considered likely to provide those therapeutic benefits, three of which are currently in use - meaning the analysis identified six candidates for drug repurposing. Among other findings, the analysis suggested that a diabetes medication, metformin, and escitalopram, used to treat depression and anxiety, could lower risk for heart failure and stroke in the model patient population. As it turns out, both of those drugs are currently being tested for their effectiveness against heart disease.

Zhang stressed that what the team found in this case study is less important than how they got there.

"My motivation is applying this, along with other experts, to find drugs for diseases without any current treatment. This is very flexible, and we can adjust case-by-case," he said. "The general model could be applied to any disease if you can define the disease outcome."

Liu R, Wei L, Zhang P.
A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data.
Nat Mach Intell, 2021. doi: 10.1038/s42256-020-00276-w

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...