Model Used to Evaluate Lockdowns was Flawed

In a recent study, researchers from Imperial College London developed a model to assess the effect of different measures used to curb the spread of the coronavirus. However, the model had fundamental shortcomings and cannot be used to draw the published conclusions, claim Swedish researchers from Lund University, and other institutions, in the journal Nature.

The results from Imperial indicated that it was almost exclusively the complete societal lockdown that suppressed the wave of infections in Europe during spring.

The study estimated the effects of different measures such as social distancing, self-isolating, closing schools, banning public events and the lockdown itself.

"As the measures were introduced at roughly the same time over a few weeks in March, the mortality data used simply does not contain enough information to differentiate their individual effects. We have demontrated this by conducting a mathematical analysis. Using this as a basis, we then ran simulations using Imperial College's original code to illustrate how the model's sensitivity leads to unreliable results," explains Kristian Soltesz, associate professor in automatic control at Lund University and first author of the article.

The group's interest in the Imperial College model was roused by the fact that it explained almost all of the reduction in transmission during the spring via lockdowns in ten of the eleven countries modelled. The exception was Sweden, which never introduced a lockdown.

"In Sweden the model offered an entirely different measure as an explanation to the reduction - a measure that appeared almost ineffective in the other countries. It seemed almost too good to be true that an effective lockdown was introduced in every country except one, while another measure appeared to be unusually effective in this country", notes Soltesz.

Soltesz is careful to point out that it is entirely plausible that individual measures had an effect, but that the model could not be used to determine how effective they were.

"The various interventions do not appear to work in isolation from one another, but are often dependent upon each other. A change in behaviour as a result of one intervention influences the effect of other interventions. How much and in what way is harder to know, and requires different skills and collaboration", says Anna Jöud, associate professor in epidemiology at Lund University and co-author of the study.

Analyses of models from Imperial College and others highlight the importance of epidemiological models being reviewed, according to the authors.

"There is a major focus in the debate on sources of data and their reliability, but an almost total lack of systematic review of the sensitivity of different models in terms of parameters and data. This is just as important, especially when governments across the globe are using dynamic models as a basis for decisions", Soltesz and Jöud point out.

The first step is to carry out a correct analysis of the model's sensitivities. If they pose too great a problem then more reliable data is needed, often combined with a less complex model structure.

"With a lot at stake, it is wise to be humble when faced with fundamental limitations. Dynamic models are usable as long as they take into account the uncertainty of the assumptions on which they are based and the data they are led by. If this is not the case, the results are on a par with assumptions or guesses", concludes Soltesz.

Soltesz, K., Gustafsson, F., Timpka, T. et al.
The effect of interventions on COVID-19.
Nature 588, E26-E28, 2020. doi: 10.1038/s41586-020-3025-y

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...