Model Used to Evaluate Lockdowns was Flawed

In a recent study, researchers from Imperial College London developed a model to assess the effect of different measures used to curb the spread of the coronavirus. However, the model had fundamental shortcomings and cannot be used to draw the published conclusions, claim Swedish researchers from Lund University, and other institutions, in the journal Nature.

The results from Imperial indicated that it was almost exclusively the complete societal lockdown that suppressed the wave of infections in Europe during spring.

The study estimated the effects of different measures such as social distancing, self-isolating, closing schools, banning public events and the lockdown itself.

"As the measures were introduced at roughly the same time over a few weeks in March, the mortality data used simply does not contain enough information to differentiate their individual effects. We have demontrated this by conducting a mathematical analysis. Using this as a basis, we then ran simulations using Imperial College's original code to illustrate how the model's sensitivity leads to unreliable results," explains Kristian Soltesz, associate professor in automatic control at Lund University and first author of the article.

The group's interest in the Imperial College model was roused by the fact that it explained almost all of the reduction in transmission during the spring via lockdowns in ten of the eleven countries modelled. The exception was Sweden, which never introduced a lockdown.

"In Sweden the model offered an entirely different measure as an explanation to the reduction - a measure that appeared almost ineffective in the other countries. It seemed almost too good to be true that an effective lockdown was introduced in every country except one, while another measure appeared to be unusually effective in this country", notes Soltesz.

Soltesz is careful to point out that it is entirely plausible that individual measures had an effect, but that the model could not be used to determine how effective they were.

"The various interventions do not appear to work in isolation from one another, but are often dependent upon each other. A change in behaviour as a result of one intervention influences the effect of other interventions. How much and in what way is harder to know, and requires different skills and collaboration", says Anna Jöud, associate professor in epidemiology at Lund University and co-author of the study.

Analyses of models from Imperial College and others highlight the importance of epidemiological models being reviewed, according to the authors.

"There is a major focus in the debate on sources of data and their reliability, but an almost total lack of systematic review of the sensitivity of different models in terms of parameters and data. This is just as important, especially when governments across the globe are using dynamic models as a basis for decisions", Soltesz and Jöud point out.

The first step is to carry out a correct analysis of the model's sensitivities. If they pose too great a problem then more reliable data is needed, often combined with a less complex model structure.

"With a lot at stake, it is wise to be humble when faced with fundamental limitations. Dynamic models are usable as long as they take into account the uncertainty of the assumptions on which they are based and the data they are led by. If this is not the case, the results are on a par with assumptions or guesses", concludes Soltesz.

Soltesz, K., Gustafsson, F., Timpka, T. et al.
The effect of interventions on COVID-19.
Nature 588, E26-E28, 2020. doi: 10.1038/s41586-020-3025-y

Most Popular Now

West Midlands to Digitally Transform Can…

NHS patients throughout the West Midlands are to benefit from a digital pathology programme, designed to help reduce cancer backlogs, transform services, and improve the speed and accuracy of cancer...

AI Transforms Smartwatch ECG Signals int…

A study published in Nature Medicine reports the ability of a smartwatch ECG to accurately detect heart failure in nonclinical environments. Researchers at Mayo Clinic applied artificial intelligence (AI) to...

Siemens Healthineers Splits Fast-Growing…

Siemens Healthineers is splitting its Asia Pacific operations into two to allow both China and the rest of the region to achieve their full potential. China, now its own region...

Siemens Healthineers Presents Two Revolu…

7 Tesla (T) Magnetom Terra.X(1) will offer excellent imaging of even the smallest structures 3T Magnetom Cima.X(2) more than doubles the gradient amplitude(3) AI algorithms which can reduce scanning...

3D Protein Structure Predictions Made by…

In a living being, proteins make up roughly everything: from the molecular machines running every cell's metabolism, to the tip of your hair. Encoded in the DNA, a protein may...

New Group to Advance Digital Twins in He…

EDITH (Ecosystem for Digital Twins in Healthcare) Coordination and Support Action (CSA) - a group made up of numerous internationally renowned research institutions, professional associations, companies, and hospitals of excellence...

Willingness to Use Video Telehealth Incr…

Americans' use and willingness to use video telehealth has increased since the beginning of the COVID-19 pandemic, rising most sharply among Black Americans and people with less education, according to...

Evaluating Use of New AI Technology in D…

Published in the Journal of the American Medical Informatics Association, University of Minnesota researchers led a study evaluating federated learning variations for COVID-19 diagnosis in chest x-rays. Federated learning is...

DMEA Call for Papers: Supporting Digital…

25 - 27 April 2023, Berlin, Germany. Health meets digitalisation: from 25 to 27 April 2023 at DMEA - Connecting Digital Health, all actors aiming to promote health IT will be...

Machine Learning can Help Predict Patien…

Predicting which patients will respond well to treatment is a quandary that has plagued the field of cancer immunotherapy for more than four decades. Now, researchers at the Johns Hopkins...

MEDICA 2022 and COMPAMED 2022: Internati…

14 - 17 November 2022, Düsseldorf, Germany. Next week sees the return of the date marked in extra thick outline in many yearly calendars of the international health and medical technology...

MEDICA and COMPAMED Present Themselves a…

14 - 17 November 2022, Düsseldorf, Germany. MEDICA and COMPAMED continue to develop in an extremely vital manner. The world's leading medical trade fair and the international No. 1 for the...