Study Details First Artificial Intelligence Tool to Help Labs Rule-out COVID-19

Hospital-based laboratories and doctors at the front line of the COVID-19 pandemic might soon add artificial intelligence to their testing toolkit. A recent study conducted with collaborators from the University of Vermont and Cedars-Sinai describes the performance of Biocogniv's new AI-COVID™ software. The team found high accuracy in predicting the probability of COVID-19 infection using routine blood tests, which can help hospitals reduce the number of patients referred for scarce PCR testing.

"Nine months into this pandemic, we now have a better understanding of how to care for patients with COVID-19," says lead author and University of Vermont Assistant Professor Timothy Plante, M.D., M.H.S., "but there's still a big bottleneck in COVID-19 diagnosis with PCR testing."

PCR testing is the current standard diagnostic for COVID-19, and requires specific sampling, like a nasal swab, and specialized laboratory equipment to run.

Biocogniv Chief Operating Officer Tanya Kanigan, Ph.D., says, "According to data from over 100 US hospitals, the national average turnaround time for COVID-19 tests ordered in emergency rooms is above 24 hours, far from the targeted one-hour turnaround."

Complete Blood Count and Complete Metabolic Panels are common laboratory tests ordered by emergency departments and have a rapid turnaround time. These tests provide insight into the immune system, electrolytes, kidney, and liver. The researchers were able to train a model that analyzes changes in these routine tests and assigns a probability of the patient being COVID-19 negative with high accuracy.

"AI-COVID takes seconds to generate its informative result once these blood tests return, which can then be incorporated by the laboratory into its own test interpretation," says Jennifer Joe, M.D., an emergency physician in Boston, Mass. and Biocogniv's Chief Medical Officer. "In an efficient emergency department that prioritizes these routine blood tests, the door-to-result time could be under an hour."

Cedars-Sinai pulmonary and internal medicine specialist Victor Tapson, M.D., says such assistive tools that help physicians rule out possible diagnoses are familiar in emergency medicine.

"For example, a low D-dimer blood test can help us rule out clots in certain patients, allowing providers to skip expensive, often time-consuming diagnostics such as chest CT scans," says Tapson.

The Biocogniv team believes a secondary benefit of laboratories incorporating AI-COVID might be reduced time for traditional PCR results.

"With the help of AI-COVID, laboratories might relieve some of the testing bottleneck by helping providers better allocate rapid PCR testing for patients who really need it," says Joe.

The AI-COVID model was validated on real world data from Cedars-Sinai as well as on data from geographically and demographically diverse patient encounters from 22 U.S. hospitals, achieving an area under the curve (or AUC) of 0.91 out of 1.00.

"This enables the model to achieve a high sensitivity of 95% while maintaining moderate specificity of 49%, which is very similar to the performance of other commonly used rule-out tests," says Biocogniv Chief Scientific Officer George Hauser, MD, a pathologist.

Biocogniv CEO Artur Adib, Ph.D., says, "I'm honored to have such an impressive team of medical scientists from the University of Vermont and Cedars-Sinai as collaborators in validating this timely model. AI has progressed considerably; the time is now to leverage this powerful tool for new healthcare breakthroughs, and we're glad to direct it to help hospital laboratories and providers combat the current COVID-19 crisis."

Plante TB, Blau AM, Berg AN, Weinberg AS, Jun IC, Tapson VF, Kanigan TS, Adib AB.
Development and External Validation of a Machine Learning Tool to Rule Out COVID-19 Among Adults in the Emergency Department Using Routine Blood Tests: A Large, Multicenter, Real-World Study.
J Med Internet Res 2020. doi: 10.2196/24048

Most Popular Now

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

A Novel AI-Based Method Reveals How Cell…

Researchers from Tel Aviv University have developed an innovative method that can help to understand better how cells behave in changing biological environments, such as those found within a cancerous...