Free Online Tool Helps Determine Whether a Patient will Need a Ventilator or ICU Care

University of California, Irvine health sciences researchers have created a machine-learning model to predict the probability that a COVID-19 patient will need a ventilator or ICU care. The tool is free and available online for any healthcare organization to use.

"The goal is to give an earlier alert to clinicians to identify patients who may be vulnerable at the onset," said Daniel S. Chow, an assistant professor in residence in radiological sciences and first author of the study, published in PLOS ONE. The tool predicts whether a patient's condition will worsen within 72 hours.

Coupled with decision-making specific to the healthcare setting in which the tool is used, the model uses a patient's medical history to determine who can be sent home and who will need critical care. The study found that at UCI Health, the tool's predictions were accurate about 95 percent of the time.

"We might think about this tool in terms of predicting the number of ICU beds that we might need," said Alpesh N. Amin, the Thomas & Mary Cesario Chair of Medicine and a study author.

The researchers started collecting COVID-19 patient data at UCI Health in January 2020, allowing them to produce a prototype of the tool by March and begin this study shortly after.

The machine-learning model used UCI Health patient data to create an algorithm that uses pre-existing conditions - such as asthma, hypertension and obesity - hospital test results and demographic data to calculate the likelihood that a patient will need a ventilator or ICU care.

Though the study was based on UCI Health patients - who share a location and were primarily Asian-American, Latino and Caucasian - the researchers also tested the tool with 40 patients at Emory University in Atlanta to see whether it worked with a different patient population. It did.

While the calculator will predict the general severity score of COVID-19 patients at any hospital, clinicians must make decisions on how to proceed based on local practices and their own number of beds, number of patients, likely spread of the disease locally, etc. At UCI Health, the tool has guided patient care based on feedback from emergency, hospital medicine, critical care and infectious disease physicians.

"You have to talk to your specialists, your doctors; you have to assess how many beds you have available and come together as a group to figure out how you want to use the tool," said Peter Chang, the assistant professor in residence in radiological sciences who designed the machine-learning model.

The team plans to expand the tool to other institutions and use it for further research. In their next study, they aim to predict which patients are most likely to benefit from COVID-19 drug trials.

This study was a collaboration between the School of Medicine, the Sue and Bill Gross School of Nursing, the Program in Public Health and the Department of Computer Science.

For further information, please visit:
http://covidrisk.hs.uci.edu/

Daniel S Chow, Justin Glavis-Bloom, Jennifer E Soun, Brent Weinberg, Theresa Berens Loveless, Xiaohui Xie, Simukayi Mutasa, Edwin Monuki, Jung In Park, Daniela Bota, Jie Wu, Leslie Thompson, Bernadette Boden-Albala, Saahir Khan, Alpesh N Amin, Peter D Chang.
Development and external validation of a prognostic tool for COVID-19 critical disease.
PLOS ONE, 2020. doi: 10.1371/journal.pone.0242953

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...