Free Online Tool Helps Determine Whether a Patient will Need a Ventilator or ICU Care

University of California, Irvine health sciences researchers have created a machine-learning model to predict the probability that a COVID-19 patient will need a ventilator or ICU care. The tool is free and available online for any healthcare organization to use.

"The goal is to give an earlier alert to clinicians to identify patients who may be vulnerable at the onset," said Daniel S. Chow, an assistant professor in residence in radiological sciences and first author of the study, published in PLOS ONE. The tool predicts whether a patient's condition will worsen within 72 hours.

Coupled with decision-making specific to the healthcare setting in which the tool is used, the model uses a patient's medical history to determine who can be sent home and who will need critical care. The study found that at UCI Health, the tool's predictions were accurate about 95 percent of the time.

"We might think about this tool in terms of predicting the number of ICU beds that we might need," said Alpesh N. Amin, the Thomas & Mary Cesario Chair of Medicine and a study author.

The researchers started collecting COVID-19 patient data at UCI Health in January 2020, allowing them to produce a prototype of the tool by March and begin this study shortly after.

The machine-learning model used UCI Health patient data to create an algorithm that uses pre-existing conditions - such as asthma, hypertension and obesity - hospital test results and demographic data to calculate the likelihood that a patient will need a ventilator or ICU care.

Though the study was based on UCI Health patients - who share a location and were primarily Asian-American, Latino and Caucasian - the researchers also tested the tool with 40 patients at Emory University in Atlanta to see whether it worked with a different patient population. It did.

While the calculator will predict the general severity score of COVID-19 patients at any hospital, clinicians must make decisions on how to proceed based on local practices and their own number of beds, number of patients, likely spread of the disease locally, etc. At UCI Health, the tool has guided patient care based on feedback from emergency, hospital medicine, critical care and infectious disease physicians.

"You have to talk to your specialists, your doctors; you have to assess how many beds you have available and come together as a group to figure out how you want to use the tool," said Peter Chang, the assistant professor in residence in radiological sciences who designed the machine-learning model.

The team plans to expand the tool to other institutions and use it for further research. In their next study, they aim to predict which patients are most likely to benefit from COVID-19 drug trials.

This study was a collaboration between the School of Medicine, the Sue and Bill Gross School of Nursing, the Program in Public Health and the Department of Computer Science.

For further information, please visit:
http://covidrisk.hs.uci.edu/

Daniel S Chow, Justin Glavis-Bloom, Jennifer E Soun, Brent Weinberg, Theresa Berens Loveless, Xiaohui Xie, Simukayi Mutasa, Edwin Monuki, Jung In Park, Daniela Bota, Jie Wu, Leslie Thompson, Bernadette Boden-Albala, Saahir Khan, Alpesh N Amin, Peter D Chang.
Development and external validation of a prognostic tool for COVID-19 critical disease.
PLOS ONE, 2020. doi: 10.1371/journal.pone.0242953

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...