Development of High-Speed nanoPCR Technology for Point-of-Care Diagnosis of COVID-19

A "nanoPCR" technology was developed for the point-of-care (POC) diagnosis of coronavirus disease-19 (COVID-19). This new technology can diagnose the infection within ~20 minutes while retaining the accuracy of conventional reverse transcription polymerase chain reaction (RT-PCR) technology.

A team of researchers led by Professor CHEON Jinwoo, the director of the Center for Nanomedicine (CNM) within the Institute for Basic Science (IBS) in Seoul, South Korea, in collaboration with Professor LEE Jae-Hyun from Yonsei University and Professor LEE Hakho from Massachusetts General Hospital developed a novel nanoPCR technology that can be used for the decentralized, POC diagnosis of COVID-19. The technique uses the same underlying principle as the standard diagnosis method of RT-PCR to detect viral RNA, but it also features a vast improvement in speed using hybrid nanomaterials and a miniaturized form factor which allows portability.

The gold-standard test method for COVID-19 currently used is RT-PCR: a test that amplifies DNA after changing RNA genes into complementary DNAs for detection. RT-PCR has high accuracy, but it takes one to two hours to detect viruses at the centralized facility equipped with bulky instrumentations. The logistics process of cold chain transportation from the sampling sites to the testing facility makes the conventional RT-PCR diagnosis even slower, taking 1 - 2 days to get the results back to the patients.

To overcome the limitations of existing diagnostic methods, the research team utilized a magneto-plasmonic nanoparticle (MPN) that is comprised of magnetic material in its core and a gold shell that exhibits plasmonic effects. By applying MPNs to PCR, they developed 'nanoPCR' which greatly improves the speed of RT-PCR while retaining highly accurate detection. Plasmonic properties of MPN refer to its ability to convert light energy into thermal energy, and by using this it was possible to shorten the thermocycling step of RT-PCR from 1 - 2 hours to within 11 minutes. In addition, the strong magnetic property of MPN allows an external magnetic field to clear MPNs from the PCR solution to allow for fluorescent detection of the amplified genes. The nanoPCR is capable of detecting even a small amount of genes (~3.2 copies/μl) accurately while simultaneously amplifying and detecting genetic material with high sensitivity and specificity.

The researchers tested nanoPCR under clinical settings through the patient specimen tests conducted with Professor CHOI Hyun-Jung's team at Chonnam National University Hospital. During the test, 150 subjects with or without COVID-19 infection were accurately diagnosed using this technology (75 positives, 75 negative samples; zero false-negatives and false-positives). The level of sensitivity and specificity was found to be equivalent to that of the conventional RT-PCR (~99%). In addition to high reliability, the whole diagnostic process was considerably fast, as on average it took about 17 minutes for the diagnosis of one specimen.

In addition, the researchers showed the possibility of improving the analytical throughput by applying a Ferris wheel system to load multiple samples at once, which would allow for simultaneous testing of many samples from multiple patients. Importantly, the nanoPCR equipment is very compact in size (15 × 15 × 18cm) and weight (3 kg), which allows it to be portable. All of this would pave the way for rapid, decentralized testing of patients for the POC diagnosis.

Director Cheon said, "Through the improvement and miniaturization of the PCR technology, we have shown that it is possible to perform PCR based POC diagnosis in the field quickly." The research is currently at a proof-of-concept stage and further developments are needed until it can be used in the field.

Jiyong Cheong, Hojeong Yu, Chang Yeol Lee, Jung-uk Lee, Hyun-Jung Choi, Jae-Hyun Lee, Hakho Lee, Jinwoo Cheon.
Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device.
Nature Biomedical Engineering, 2020. doi: 10.1038/s41551-020-00654-0

Most Popular Now

West Midlands to Digitally Transform Can…

NHS patients throughout the West Midlands are to benefit from a digital pathology programme, designed to help reduce cancer backlogs, transform services, and improve the speed and accuracy of cancer...

AI Approach may Help Identify Melanoma S…

Most deaths from melanoma - the most lethal form of skin cancer - occur in patients who were initially diagnosed with early-stage melanoma and then later experienced a recurrence that...

Siemens Healthineers and University of M…

Siemens Healthineers and UHealth - University of Miami Health System - announced a Value Partnership(1) agreement. This strategic relationship will further technological advancement and standardization of equipment at the health...

Siemens Healthineers Splits Fast-Growing…

Siemens Healthineers is splitting its Asia Pacific operations into two to allow both China and the rest of the region to achieve their full potential. China, now its own region...

Philips Advances MR Radiotherapy Imaging…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced two new advances in MR-only workflows to advance head and neck cancer radiotherapy imaging and simulation. The...

AI Transforms Smartwatch ECG Signals int…

A study published in Nature Medicine reports the ability of a smartwatch ECG to accurately detect heart failure in nonclinical environments. Researchers at Mayo Clinic applied artificial intelligence (AI) to...

3D Protein Structure Predictions Made by…

In a living being, proteins make up roughly everything: from the molecular machines running every cell's metabolism, to the tip of your hair. Encoded in the DNA, a protein may...

Siemens Healthineers Presents Two Revolu…

7 Tesla (T) Magnetom Terra.X(1) will offer excellent imaging of even the smallest structures 3T Magnetom Cima.X(2) more than doubles the gradient amplitude(3) AI algorithms which can reduce scanning...

Integrating Digital Twins and Deep Learn…

Digital twins are virtual representations of devices and processes that capture the physical properties of the environment and operational algorithms/techniques in the context of medical devices and technologies. Digital twins...

New Group to Advance Digital Twins in He…

EDITH (Ecosystem for Digital Twins in Healthcare) Coordination and Support Action (CSA) - a group made up of numerous internationally renowned research institutions, professional associations, companies, and hospitals of excellence...

Willingness to Use Video Telehealth Incr…

Americans' use and willingness to use video telehealth has increased since the beginning of the COVID-19 pandemic, rising most sharply among Black Americans and people with less education, according to...

DMEA Call for Papers: Supporting Digital…

25 - 27 April 2023, Berlin, Germany. Health meets digitalisation: from 25 to 27 April 2023 at DMEA - Connecting Digital Health, all actors aiming to promote health IT will be...