Survey of COVID-19 Research Provides Fresh Overview

Researchers at Karolinska Institutet in Sweden have explored all COVID-19 research published during the initial phase of the pandemic. The results, which were achieved by using a machine learning-based approach and published in the Journal of Medical Internet Research, will make it easier to direct future research to where it is most needed.

In the wake of the rapid spread of COVID-19, research on the disease has escalated dramatically. Over 60,000 COVID-19-related articles have been indexed to date in the medical database PubMed. This body of research is too large to be assessed by traditional methods, such as systematic and scoping reviews, which makes it difficult to gain a comprehensive overview of the science.

"Despite COVID-19 being a novel disease, several systematic reviews have already been published," says Andreas Älgå, medical doctor and researcher at the Department of Clinical Science and Education, Sodersjukhuset at Karolinska Institutet. "However, such reviews are extremely time- and resource-consuming, generally lag far behind the latest published evidence, and only focus on a specific aspect of the pandemic."

To obtain a fuller overview, Andreas Älgå and his colleagues have employed a machine learning technique that enables them to map key areas of a research field and track the development over time. This present study included 16,670 scientific papers on COVID-19 published from 14 February to 1 June 2020, divided into 14 different topics.

The study shows that the most common research topics were health care response, clinical manifestations, and psychosocial impact. Some topics, like health care response, declined over time, while others, such as clinical manifestations and protective measures, showed a growing trend of publications.

Protective measures, immunology, and clinical manifestations were the research topics published in journals with the highest average scientific ranking. The countries that accounted for the majority of publications (the USA, China, Italy and the UK) were also amongst the ones hardest hit by the pandemic.

"Our results indicate how the scientific community has reacted to the current pandemic, what issues were prioritised during the early phase and where in the world the research was conducted," says fellow-researcher Martin Nordberg, medical doctor and researcher at the Department of Clinical Science and Education, Sodersjukhuset.

The researchers have also developed a website, where regular updates on the evolution of the COVID-19 evidence base can be found.

"We hope that our results, including the website, could help researchers and policy makers to form a structured view of the research on COVID-19 and direct future research efforts accordingly," says Dr Älgå.

Andreas Älgå, Oskar Eriksson, Martin Nordberg.
Analysis of Scientific Publications During the Early Phase of the COVID-19 Pandemic: Topic Modeling Study.
Journal of Medical Internet Research, 10 November 2020, doi: 10.2196/21559.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...