Early Results from DETECT Study Suggest Fitness Trackers can Predict COVID-19 Infections

Examining data from the first six weeks of their landmark DETECT study, a team of scientists from the Scripps Research Translational Institute sees encouraging signs that wearable fitness devices can improve public health efforts to control COVID-19.

The DETECT study, launched on March 25, uses a mobile app to collect smartwatch and activity tracker data from consenting participants, and also gathers their self-reported symptoms and diagnostic test results. Any adult living in the United States is eligible to participate in the study by downloading the research app, MyDataHelps.

In a study that appears today in Nature Medicine, the Scripps Research team reports that wearable devices like Fitbit are capable of identifying cases of COVID-19 by evaluating changes in heart rate, sleep and activity levels, along with self-reported symptom data - and can identify cases with greater success than looking at symptoms alone.

"What's exciting here is that we now have a validated digital signal for COVID-19. The next step is to use this to prevent emerging outbreaks from spreading," says Eric Topol, MD, director and founder of the Scripps Research Translational Institute and executive vice president of Scripps Research. "Roughly 100 million Americans already have a wearable tracker or smartwatch and can help us; all we need is a tiny fraction of them - just 1 percent or 2 percent - to use the app."

With data from the app, researchers can see when participants fall out of their normal range for sleep, activity level or resting heart rate; deviations from individual norms are a sign of viral illness or infection.

But how do they know if the illness causing those changes is COVID-19? To answer that question, the team reviewed data from those who reported developing symptoms and were tested for the novel coronavirus. Knowing the test results enabled them to pinpoint specific changes indicative of COVID-19 versus other illnesses.

"One of the greatest challenges in stopping COVID-19 from spreading is the ability to quickly identify, trace and isolate infected individuals," says Giorgio Quer, PhD, director of artificial intelligence at Scripps Research Translational Institute and first author of the study. "Early identification of those who are pre-symptomatic or even asymptomatic would be especially valuable, as people may potentially be even more infectious during this period. That's the ultimate goal."

For the study, the team used health data from fitness wearables and other devices to identify--with roughly 80% prediction accuracy--whether a person who reported symptoms was likely to have COVID-19. This is a significant improvement from other models that only evaluated self-reported symptoms.

As of June 7, 30,529 individuals had enrolled in the study, with representation from every U.S. state. Of these, 3,811 reported symptoms, 54 tested positive for the coronavirus and 279 tested negative. More sleep and less activity than an individual's normal levels were significant factors in predicting coronavirus infection.

The predictive model under development in DETECT might someday help public health officials spot coronavirus hotspots early. It also may encourage people who are potentially infected to immediately seek diagnostic testing and, if necessary, quarantine themselves to avoid spreading the virus.

"We know that common screening practices for the coronavirus can easily miss pre-symptomatic or asymptomatic cases," says Jennifer Radin, PhD, an epidemiologist at the Scripps Research Translational Institute who is leading the study. "And infrequent viral tests, with often-delayed results, don't offer the real-time insights we need to control the spread of the virus."

The DETECT team is now actively recruiting more participants for this important research. The goal to enroll more than 100,000 people, which will help the scientists improve their predictions of who will get sick, including those who are asymptomatic. In addition, Radin and her colleagues plan to incorporate data from frontline essential workers who are at an especially high risk of infection.

Giorgio Quer, Jennifer M Radin, Matteo Gadaleta, Katie Baca-Motes, Lauren Ariniello, Edward Ramos, Vik Kheterpal, Eric J Topol, Steven R Steinhubl.
Wearable sensor data and self-reported symptoms for COVID-19 detection.
Nat Med, 2020. doi: 10.1038/s41591-020-1123-x

Most Popular Now

Hull University Teaching Hospitals NHS T…

Hull University Teaching Hospitals NHS Trust has deployed DXC Technology's (NYSE:DXC) cloud-based Clinical Aide mobile application, which both improves secure access to electronic patient medical records and increases patient and...

Central Hospital in Finland Automates Sy…

This November Central Ostrobothnia Central Hospital in Finland has started symptom tracking and remote monitoring of corona virus-infected patients with the Buddy Healthcare mobile application and clinical monitoring platform. The...

Interactive virtual reality emerges as a…

Bristol scientists have demonstrated a new virtual reality [VR] technique which should help in developing drugs against the SARS-CoV-2 virus - and enable researchers to share models and collaborate in...

DMEA Newcomer Award: The Search is on fo…

13 - 15 April 2021, Berlin, Germany. More efficient, digital and patient-friendly! Tomorrow's healthcare system promises great things. And to ensure this becomes reality a fresh impetus and creative ideas are...

App to Help NHS Prevent Deadly Hospital …

Compass app to help NHS trusts prevent hospital-acquired acute kidney injury and pneumonia - both of which cause harm to COVID-19 patients and can be fatal. Hospitals could alleviate pressure...

Leeds Deploys Imaging Tech for Advanced …

A multi-million pound initiative that is digitising, connecting and applying artificial intelligence to NHS pathology services in the North of England has taken an important step, after Leeds Teaching Hospitals...

Survey of COVID-19 Research Provides Fre…

Researchers at Karolinska Institutet in Sweden have explored all COVID-19 research published during the initial phase of the pandemic. The results, which were achieved by using a machine learning-based approach...

COVID-19 High Performance Computing Cons…

The COVID-19 High Performance Computing (HPC) Consortium, a unique public-private effort to make supercomputing power available to researchers working on projects related to COVID-19, announced that it has entered into...

Computer Vision App Allows Easier Monito…

A computer vision technology developed by University of Cambridge engineers has now been developed into a free mobile phone app for regular monitoring of glucose levels in people with diabetes. The...

Bayer Initiates New G4A Digital Health P…

Bayer will support five new startup companies as part of the company's G4A Digital Health Partnerships Program. Focus will be on fostering the development of a digital health ecosystem, while...

Leading Pathology Laboratories Deploy Te…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced leading pathology laboratories across North America, Europe, and Asia have implemented full digitization for their histology...