AI can Detect COVID-19 in the Lungs Like a Virtual Physician

A University of Central Florida researcher is part of a new study showing that artificial intelligence can be nearly as accurate as a physician in diagnosing COVID-19 in the lungs.

The study, recently published in Nature Communications, shows the new technique can also overcome some of the challenges of current testing.

Researchers demonstrated that an AI algorithm could be trained to classify COVID-19 pneumonia in computed tomography (CT) scans with up to 90 percent accuracy, as well as correctly identify positive cases 84 percent of the time and negative cases 93 percent of the time.

CT scans offer a deeper insight into COVID-19 diagnosis and progression as compared to the often-used reverse transcription-polymerase chain reaction, or RT-PCR, tests. These tests have high false negative rates, delays in processing and other challenges.

Another benefit to CT scans is that they can detect COVID-19 in people without symptoms, in those who have early symptoms, during the height of the disease and after symptoms resolve.

However, CT is not always recommended as a diagnostic tool for COVID-19 because the disease often looks similar to influenza-associated pneumonias on the scans.

The new UCF co-developed algorithm can overcome this problem by accurately identifying COVID-19 cases, as well as distinguishing them from influenza, thus serving as a great potential aid for physicians, says Ulas Bagci, an assistant professor in UCF's Department of Computer Science.

Bagci was a co-author of the study and helped lead the research.

"We demonstrated that a deep learning-based AI approach can serve as a standardized and objective tool to assist healthcare systems as well as patients," Bagci says. "It can be used as a complementary test tool in very specific limited populations, and it can be used rapidly and at large scale in the unfortunate event of a recurrent outbreak."

Bagci is an expert in developing AI to assist physicians, including using it to detect pancreatic and lung cancers in CT scans.

He also has two large, National Institutes of Health grants exploring these topics, including $2.5 million for using deep learning to examine pancreatic cystic tumors and more than $2 million to study the use of artificial intelligence for lung cancer screening and diagnosis.

To perform the study, the researchers trained a computer algorithm to recognize COVID-19 in lung CT scans of 1,280 multinational patients from China, Japan and Italy.

Then they tested the algorithm on CT scans of 1,337 patients with lung diseases ranging from COVID-19 to cancer and non-COVID pneumonia.

When they compared the computer's diagnoses with ones confirmed by physicians, they found that the algorithm was extremely proficient in accurately diagnosing COVID-19 pneumonia in the lungs and distinguishing it from other diseases, especially when examining CT scans in the early stages of disease progression.

"We showed that robust AI models can achieve up to 90 percent accuracy in independent test populations, maintain high specificity in non-COVID-19 related pneumonias, and demonstrate sufficient generalizability to unseen patient populations and centers," Bagci says.

The UCF researcher is a longtime collaborator with study co-authors Baris Turkbey and Bradford J. Wood. Turkbey is an associate research physician at the NIH's National Cancer Institute Molecular Imaging Branch, and Wood is the director of NIH's Center for Interventional Oncology and chief of interventional radiology with NIH's Clinical Center.

This research was supported with funds from the NIH Center for Interventional Oncology and the Intramural Research Program of the National Institutes of Health, intramural NIH grants, the NIH Intramural Targeted Anti-COVID-19 program, the National Cancer Institute and NIH.

Harmon, S.A., Sanford, T.H., Xu, S. et al.
Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets.
Nat Commun 11, 2020. doi: 10.1038/s41467-020-17971-2.

Most Popular Now

Early Warning System for Intensive Care …

Life-threatening situations occur time and again in an intensive care unit. To make sure that doctors can intervene in time, a team at the German Heart Center Berlin (DHZB) has...

Philips Partners with Orbita to Develop …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, and Orbita Inc., an innovative provider of conversational artificial intelligence (AI) solutions for healthcare, announced a partnership agreement...

CliniSys Group Creates Single Brand for …

CliniSys Group has created a single brand for its businesses in the UK and Europe, with a refreshed logo and a new website. The move creates a unified identity for CliniSys...

East Lancashire Signs Deal for Early War…

Thousands of NHS professionals across five hospitals in East Lancashire are to benefit from early warning technology that will help them detect and swiftly respond to deteriorating patients in need...

FDA Grants Oxehealth Vital Signs De Novo…

Oxehealth has announced another world first after the US Food and Drug Administration granted a De Novo clearance for its Oxehealth Vital Signs product, which is incorporated into Oxevision, the...

Telemedicine Improves Access to High-Qua…

The American Academy of Sleep Medicine recently published an update on the use of telemedicine for the diagnosis and treatment of sleep disorders to reflect lessons learned from the transition...

Philips and NHS Implement the First Regi…

Royal Philips (NYSE: PHG, AEX: PHIA), announced it has supported the NHS' Cheshire and Merseyside consortium [1] to become the first regional hub supplying the United Kingdom's National COVID-19 Chest...

AI could Crack the Language of Cancer an…

Powerful algorithms used by Netflix, Amazon and Facebook can 'predict' the biological language of cancer and neurodegenerative diseases like Alzheimer's, scientists have found.

DMEA 2021: Digital Health. 100 % Virtual…

7 - 11 June 2021, Berlin, Germany. An entire week dominated by digital healthcare! With that in mind, early in June DMEA 2021 will be kicking off with a wide range...

X-Rays Combined with AI Offer Fast Diagn…

X-rays, first used clinically in the late 1890s, could be a leading-edge diagnostic tool for COVID-19 patients with the help of artificial intelligence, according to a team of researchers in...

Predicting COVID-19 Outbreaks with Cell …

Mobility tracking using cell phone data showing greater movement of people is a strong predictor of increased rates of COVID-19, according to new data in CMAJ (Canadian Medical Association Journal).