Designed Antiviral Proteins Inhibit SARS-CoV-2 in the Lab

Computer-designed small proteins have now been shown to protect lab-grown human cells from SARS-CoV-2, the coronavirus that causes COVID-19. The findings are reported today in Science.

In the experiments, the lead antiviral candidate, named LCB1, rivaled the best-known SARS-CoV-2 neutralizing antibodies in its protective actions. LCB1 is currently being evaluated in rodents.

Coronaviruses are studded with so-called Spike proteins. These latch onto human cells to enable the virus to break in and infect them. The development of drugs that interfere with this entry mechanism could lead to treatment of or even prevention of infection.

Institute for Protein Design researchers at the University of Washington School of Medicine used computers to originate new proteins that bind tightly to SARS-CoV-2 Spike protein and obstruct it from infecting cells.

Beginning in January, more than two million candidate Spike-binding proteins were designed on the computer. Over 118,000 were then produced and tested in the lab.

"Although extensive clinical testing is still needed, we believe the best of these computer-generated antivirals are quite promising," said lead author Longxing Cao, a postdoctoral scholar at the Institute for Protein Design.

"They appear to block SARS-CoV-2 infection at least as well as monoclonal antibodies, but are much easier to produce and far more stable, potentially eliminating the need for refrigeration," he added.

The researchers created antiviral proteins through two approaches. First, a segment of the ACE2 receptor, which SARS-CoV-2 naturally binds to on the surface of human cells, was incorporated into a series of small protein scaffolds.

Second, completely synthetic proteins were designed from scratch. The latter method produced the most potent antivirals, including LCB1, which is roughly six times more potent on a per mass basis than the most effective monoclonal antibodies reported thus far.

Scientists from the University of Washington School of Medicine in Seattle and Washington University School of Medicine in St. Louis collaborated on this work.

"Our success in designing high-affinity antiviral proteins from scratch is further proof that computational protein design can be used to create promising drug candidates," said senior author and Howard Hughes Medical Institute Investigator David Baker, professor of biochemistry at the UW School of Medicine and head of the Institute for Protein Design. In 2019, Baker gave a TED talk on how protein design might be used to stop viruses.

To confirm that the new antiviral proteins attached to the coronavirus Spike protein as intended, the team collected snapshots of the two molecules interacting by using cryo-electron microscopy. These experiments were performed by researchers in the laboratories of David Veesler, assistant professor of biochemistry at the UW School of Medicine, and Michael S. Diamond, the Herbert S. Gasser Professor in the Division of Infectious Diseases at Washington University School of Medicine in St. Louis.

"The hyperstable minibinders provide promising starting points for new SARS-CoV-2 therapeutics," the antiviral research team wrote in their study pre-print, "and illustrate the power of computational protein design for rapidly generating potential therapeutic candidates against pandemic threats."

Longxing Cao, Inna Goreshnik, Brian Coventry, James Brett Case, Lauren Miller, Lisa Kozodoy, Rita E Chen, Lauren Carter, Alexandra C Walls, Young-Jun Park, Eva-Maria Strauch, Lance Stewart, Michael S Diamond, David Veesler, David Baker.
De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.
Science, 2020. doi: 10.1126/science.abd9909

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...