Smartphones may Help Detect Diabetes

Researchers at UC San Francisco have developed a "digital biomarker" that would use a smartphone's built-in camera to detect Type 2 diabetes - one of the world's top causes of disease and death - potentially providing a low-cost, in-home alternative to blood draws and clinic-based screening tools.

Type 2 diabetes affects more than 32 million Americans and more than 450 million people worldwide, and can raise the risk of diseases affecting nearly every organ system, including coronary heart disease, kidney failure, blindness and stroke. In the current pandemic, it also has been found to increase the risk of severe symptoms of COVID-19.

Yet, half of the people with diabetes are unaware of their diagnosis and risks to their health.

"The ability to detect a condition like diabetes that has so many severe health consequences using a painless, smartphone-based test raises so many possibilities," said co-senior author Geoffrey H. Tison, MD, MPH, assistant professor in cardiology, of the Aug. 17, 2020, study in Nature Medicine. "The vision would be for a tool like this to assist in identifying people at higher risk of having diabetes, ultimately helping to decrease the prevalence of undiagnosed diabetes."

Screening tools that can be deployed easily, using technology already contained in smartphones, could rapidly increase the ability to detect diabetes, the researchers said, including populations out of reach of traditional medical care.

While diabetes mellitus is the seventh highest global cause of death on its own, according to the World Health Organization, it also significantly raises the risk of heart disease, which is the leading cause of death in the United States and worldwide. The U.S. Centers for Disease Control and Prevention estimate that people with Type 2 diabetes are twice as likely to die of heart disease as those who do not have diabetes.

"Diabetes can be asymptomatic for a long period of time, making it much harder to diagnose," said lead author Robert Avram, MD, MSc, clinical instructor in cardiology. "To date, noninvasive and widely-scalable tools to detect diabetes have been lacking, motivating us to develop this algorithm."

In developing the biomarker, the researchers hypothesized that a smartphone camera could be used to detect vascular damage due to diabetes by measuring signals called photoplethysmography (PPG), which most mobile devices, including smartwatches and fitness trackers, are capable of acquiring. The researchers used the phone flashlight and camera to measure PPGs by capturing color changes in the fingertip corresponding with each heartbeat.

In the Nature Medicine study, UCSF researchers obtained nearly 3 million PPG recordings from 53,870 patients in the Health eHeart Study who used the Azumio Instant Heart Rate app on the iPhone and reported having been diagnosed with diabetes by a health care provider. This data was used to both develop and validate a deep-learning algorithm to detect the presence of diabetes using smartphone-measured PPG signals.

Overall, the algorithm correctly identified the presence of diabetes in up to 81 percent of patients in two separate datasets. When the algorithm was tested in an additional dataset of patients enrolled from in-person clinics, it correctly identified 82 percent of patients with diabetes.

Among the patients that the algorithm predicted did not have diabetes, 92 to 97 percent indeed did not have the disease across the validation datasets. When this PPG-derived prediction was combined with other easily obtainable patient information, such as age, gender, body mass index and race/ethnicity, predictive performance improved further.

At this level of predictive performance, the authors said the algorithm could serve a similar role to other widespread disease screening tools to reach a much broader group of people, followed by a physician's confirmation of the diabetes diagnosis and a treatment plan.

"We demonstrated that the algorithm's performance is comparable to other commonly used tests, such as mammography for breast cancer or cervical cytology for cervical cancer, and its painlessness makes it attractive for repeated testing," said study author Jeffrey Olgin, MD, a UCSF Health cardiologist and professor and chief of the UCSF Division of Cardiology. "A widely accessible smartphone-based tool like this could be used to identify and encourage individuals at higher risk of having prevalent diabetes to seek medical care and obtain a low-cost confirmatory test."

The authors recommend further study to determine the effectiveness of this approach for specific clinical applications, such as screening or therapeutic monitoring.

Robert Avram, Jeffrey E Olgin, Peter Kuhar, J Weston Hughes, Gregory M Marcus, Mark J Pletcher, Kirstin Aschbacher, Geoffrey H Tison.
A digital biomarker of diabetes from smartphone-based vascular signals.
Nature Medicine, 2020. doi: 10.1038/s41591-020-1010-5

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...