AI may Offer a Better Way to ID Drug-Resistant Superbugs

Biomedical engineers at Duke University have shown that different strains of the same bacterial pathogen can be distinguished by a machine learning analysis of their growth dynamics alone, which can then also accurately predict other traits such as resistance to antibiotics. The demonstration could point to methods for identifying diseases and predicting their behaviors that are faster, simpler, less expensive and more accurate than current standard techniques.

The results appear online on August 3 in the Proceedings of the National Academy of Sciences.

For most of the history of microbiology, bacteria identification has relied on growing cultures and analyzing the physical traits and behaviors of the resulting bacterial colony. It wasn't until recently that scientists could simply run a genetic test.

Genetic sequencing, however, isn't universally available and can often take a long time. And even with the ability to sequence entire genomes, it can be difficult to tie specific genetic variations to different behaviors in the real world.

For example, even though researchers know the genetic mutations that help shield/protect bacteria from beta-lactam antibiotics--the most commonly used antibiotic in the world--sometimes the DNA isn't the whole story. While a single resistant bacteria usually can't survive a dose of antibiotics on its own, large populations often can.

Lingchong You, professor of biomedical engineering at Duke, and his graduate student, Carolyn Zhang, wondered if a new twist on older methods might work better. Maybe they could amplify one specific physical characteristic and use it to not only identify the pathogen, but to make an educated guess about other traits such as antibiotic resistance.

"We thought that the slight variance in the genes between strains of bacteria might have a subtle effect on their metabolism," You said. "But because bacterial growth is exponential, that subtle effect could be amplified enough for us to take advantage of it. To me, that notion is somewhat intuitive, but I was surprised at how well it actually worked."

How quickly a bacterial culture grows in a laboratory depends on the richness of the media it is growing in and its chemical environment. But as the population grows, the culture consumes nutrients and produces chemical byproducts. Even if different strains start with the exact same environmental conditions, subtle differences in how they grow and influence their surroundings accumulate over time.

In the study, You and Zhang took more than 200 strains of bacterial pathogens, most of which were variations of E. coli, put them into identical growth environments, and carefully measured their population density as it increased. Because of their slight genetic differences, the cultures grew in fits and starts, each possessing a unique temporal fluctuation pattern. The researchers then fed the growth dynamics data into a machine learning program, which taught itself to identify and match the growth profiles to the different strains.

To their surprise, it worked really well.

"Using growth data from only one initial condition, the model was able to identify a particular strain with more than 92 percent accuracy," You said. "And when we used four different starting environments instead of one, that accuracy rose to about 98 percent."

Taking this idea one step further, You and Zhang then looked to see if they could use growth dynamic profiles to predict another phenotype - antibiotic resistance.

The researchers once again loaded a machine learning program with the growth dynamic profiles from all but one of the various strains, along with data about their resilience to four different antibiotics. They then tested to see if the resulting model could predict the final strain's antibiotic resistances from its growth profile. To bulk up their dataset, they repeated this process for all of the other strains.

The results showed that the growth dynamic profile alone could successfully predict a strain's resistance to antibiotics 60 to 75 percent of the time.

"This is actually on par or better than some of the current techniques in the literature, including many that use genetic sequencing data," said You. "And this was just a proof of principle. We believe that with higher-resolution data of the growth dynamics, we could do an even better job in the long term."

The researchers also looked to see if the strains exhibiting similar growth curves also had similar genetic profiles. As it turns out, the two are completely uncorrelated, demonstrating once again how difficult it can be to map cellular traits and behaviors to specific stretches of DNA.

Moving forward, You plans to optimize the growth curve procedure to reduce the time it takes to identify a strain from 2 to 3 days to perhaps 12 hours. He's also planning on using high-definition cameras to see if mapping how bacterial colonies grow in space in a Petri dish can help make the process even more accurate.

Carolyn Zhang, Wenchen Song, Helena R Ma, Xiao Peng, Deverick J Anderson, Vance G Fowler Jr, Joshua T Thaden, Minfeng Xiao, Lingchong You.
Temporal encoding of bacterial identity and traits in growth dynamics.
PNAS, 2020, doi: 10.1073/pnas.2008807117.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...