Optimizing Neural Networks on a Brain-Inspired Computer

Many computational properties are maximized when the dynamics of a network are at a "critical point", a state where systems can quickly change their overall characteristics in fundamental ways, transitioning e.g. between order and chaos or stability and instability. Therefore, the critical state is widely assumed to be optimal for any computation in recurrent neural networks, which are used in many AI applications.

Researchers from the HBP partner Heidelberg University and the Max-Planck-Institute for Dynamics and Self-Organization challenged this assumption by testing the performance of a spiking recurrent neural network on a set of tasks with varying complexity at - and away from critical dynamics. They instantiated the network on a prototype of the analog neuromorphic BrainScaleS-2 system. BrainScaleS is a state-of-the-art brain-inspired computing system with synaptic plasticity implemented directly on the chip. It is one of two neuromorphic systems currently under development within the European Human Brain Project.

First, the researchers showed that the distance to criticality can be easily adjusted in the chip by changing the input strength, and then demonstrated a clear relation between criticality and task-performance. The assumption that criticality is beneficial for every task was not confirmed: whereas the information-theoretic measures all showed that network capacity was maximal at criticality, only the complex, memory intensive tasks profited from it, while simple tasks actually suffered. The study thus provides a more precise understanding of how the collective network state should be tuned to different task requirements for optimal performance.

Mechanistically, the optimal working point for each task can be set very easily under homeostatic plasticity by adapting the mean input strength. The theory behind this mechanism was developed very recently at the Max Planck Institute. "Putting it to work on neuromorphic hardware shows that these plasticity rules are very capable in tuning network dynamics to varying distances from criticality", says senior author Viola Priesemann, group leader at MPIDS. Thereby tasks of varying complexity can be solved optimally within that space.

The finding may also explain why biological neural networks operate not necessarily at criticality, but in the dynamically rich vicinity of a critical point, where they can tune their computation properties to task requirements. Furthermore, it establishes neuromorphic hardware as a fast and scalable avenue to explore the impact of biological plasticity rules on neural computation and network dynamics.

"As a next step, we now study and characterize the impact of the spiking network's working point on classifying artificial and real-world spoken words", says first author Benjamin Cramer of Heidelberg University.

Benjamin Cramer, David Stöckel, Markus Kreft, Michael Wibral, Johannes Schemmel, Karlheinz Meier, Viola Priesemann.
Control of criticality and computation in spiking neuromorphic networks with plasticity.
Nature Communications, 2020. doi: 10.1038/s41467-020-16548-3.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...