Artificial Intelligence can Improve How Chest Images Are Used in Care of COVID-19 Patients

According to a recent report by Johns Hopkins Medicine researchers, artificial intelligence (AI) should be used to expand the role of chest X-ray imaging - using computed tomography, or CT - in diagnosing and assessing coronavirus infection so that it can be more than just a means of screening for signs of COVID-19 in a patient's lungs.

Within the study, published in the May 6 issue of Radiology: Artificial Intelligence, the researchers say that "AI's power to generate models from large volumes of information - fusing molecular, clinical, epidemiological and imaging data - may accelerate solutions to detect, contain and treat COVID-19."

Although CT chest imaging is not currently a routine method for diagnosing COVID-19 in patients, it has been helpful in excluding other possible causes for COVID-like symptoms, confirming a diagnosis made by another means or providing critical data for monitoring a patient's progress in severe cases of the disease. The Johns Hopkins Medicine researchers believe this isn't enough, making the case that there is "an untapped potential" for AI-enhanced imaging to improve. They suggest the technology can be used for:

  • Risk stratification, the process of categorizing patients for the type of care they receive based on the predicted course of their COVID-19 infection.
  • Treatment monitoring to define the effectiveness of agents used to combat the disease.
  • Modeling how COVID-19 behaves, so that novel, customized therapies can be developed, tested and deployed.

For example, the researchers propose that "AI may help identify the immunological markers most associated with poor clinical course, which may yield new targets" for drugs that will direct the immune system against the SARS-CoV-2 virus that causes COVID-19.

Shinjini Kundu, Hesham Elhalawani, Judy W Gichoya, Charles E Kahn Jr.
How Might AI and Chest Imaging Help Unravel COVID-19's Mysteries?
Radiology: Artificial Intelligence, 2020. doi: 10.1148/ryai.2020200053

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...