Researchers Identify Healthcare Data Defects

Researchers at the University of Maryland, Baltimore County (UMBC) have developed a method to investigate the quality of healthcare data using a systematic approach, which is based on creating a taxonomy for data defects thorough literature review and examination of data. Using that taxonomy, the researchers developed software that automatically detects data defects effectively and efficiently.

The research is published in the Journal of the American Medical Informatics Association (JAMIA), and is led by Günes Koru, FAMIA, professor of information systems, and Yili Zhang, a former graduate student in Koru's lab who is now a postdoctoral fellow at Northwestern University. The paper stresses that the prevalence of defects in some of the existing healthcare data can be quite high. This must be addressed to better leverage the data to improve the quality of care, reduce costs, and achieve better healthcare outcomes. The team collaborated with an anonymous healthcare organization using real healthcare datasets.

Though many researchers today are involved in the analysis of healthcare data and are invested in its importance, there is very little research being done on the quality of the data being analyzed. Ultimately, this creates a far-reaching problem because important findings from the data may be less meaningful than assumed unless significant effort and money can be invested to deal with data quality problems with ad-hoc methods. For instance, much of the data that Koru's team analyzed contained errors of duplication, mismatched formatting and incorrect syntax.

Identifying these defects in healthcare data is deeply important when it comes to healthcare facilities providing essential services. Koru explains how healthcare facilities use the data collected. Healthcare organizations must "improve upon their services based on that data, and collect more data. If we can keep this cycle going, we can actually learn and improve more quickly, which is the main idea behind the concept of Learning Health Systems, and doing so is all the more important in the COVID-19 era," he says.

In the last decade, healthcare providers in the U.S. made a large leap from keeping patient records on paper to containing all patient information in computerized databases. This jump is significant because of the opportunity it provides for analysis, but researchers are still trying to learn how to effectively leverage the data as an asset.

Koru positions his team's research on data quality as being between the fields that are working to leverage data and the fields that are working to generate it. If the data itself--the bridge that connects the two fields - contains many inconsistencies and problems, then the relevant information cannot be used to provide better outcomes for patients and facilities.

In the future, Koru will continue to work with the partner facility's healthcare professionals to build a path forward. He will collaborate further to improve the quality of data and sustain an operation that bases much of its success on the data that it can gather from health services. His team will work with healthcare administration professionals when the software tools developed through this research are adopted in organizational settings to ensure the usability and usefulness of the tools.

"The taxonomy will help data stewards to identify, understand, and manage potential data quality problems in their future work," says Zhang.

Now more than ever, healthcare facilities are relying on strong data to support patients and the healthcare field as a whole. Koru and Zhang have found that collaborations between data researchers and healthcare organizations can generate effective solutions to the problem of data quality improvement.

Yili Zhang, Güneş Koru.
Understanding and detecting defects in healthcare administration data: Toward higher data quality to better support healthcare operations and decisions.
Journal of the American Medical Informatics Association, March 2020. doi: 10.1093/jamia/ocz201

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...