Statistical Approach to COVID-19 Clinical Trials Aims to Accelerate Drug Approval Process

In response to the COVID-19 pandemic, researchers from the Massachusetts Institute of Technology have published a pair of studies in a COVID-19 special issue of the Harvard Data Science Review, freely available via open access, describing new methods for accelerating drug approvals during pandemics and for providing more accurate measures of the probabilities of success for clinical trials of vaccines and other anti-infective therapies.

"Randomized clinical trials - where patients are assigned randomly to two groups, one receiving a new treatment and the other receiving a placebo or reference treatment - are the gold standard for determining the safety and effectiveness of a treatment," says Andrew Lo, Ph.D., the study's senior author and the Charles E. and Susan T. Harris Professor at the MIT Sloan School of Management. "Only when the treatment group shows significant improvement over the control group, will regulators approve the therapy." He adds, "the current process is designed to protect the public by minimizing the chances of "false positives" (approving ineffective and unsafe therapies), and by and large, it's been very successful."

But there is a trade-off between false positives and false negatives (not approving a safe and effective therapy), and Lo and his collaborators have developed a framework that uses an epidemiological model of COVID-19 to calculate the optimal statistical threshold for approving a drug during a pandemic. "In the midst of an outbreak, many lives are at stake so we need to be less concerned about false positives and more concerned about false negatives than during normal times," says Lo, "In response, we've developed an analytic framework that allows regulators to make this trade-off systematically, transparently, and rationally."

At the core of this new framework - which was jointly developed in collaboration with MIT students Qingyang Xu and Danying Xiao, and former MIT student Shomesh Chaudhuri, Ph.D. (now at QLS Advisors) - is an explicit optimization algorithm designed to minimize the expected loss of life across various scenarios generated by a statistical model of an infectious disease. This algorithm, says Xu, will lead to more drug approvals during outbreaks, not unlike the U.S. Food and Drug Administration's Emergency Use Authorizations (EUA) program. "Our framework complements the EUA, allowing regulators to incorporate loss-of-life considerations quantitatively during periods of extraordinary stress," explains Xu, the lead investigator of the study.

In a companion study authored by Lo and MIT Ph.D. students Kien Wei Siah and Chi Heem Wong, the MIT researchers estimated the probabilities of success (PoSs) of clinical trials for vaccines and other anti-infective therapies using the Citeline® dataset provided by Informa Pharma Intelligence, part of UK-based publishing company, Informa®. This dataset includes 43,414 unique triplets of clinical trial, drug, and disease over the past 20 years, yielding over 2,500 vaccine programs and more than 6,800 nonvaccine, anti-infective programs, the largest dataset of its kind.

"The PoS is a key input into each major decision of every biopharma company about which disease to tackle and how much resources to devote to it," observes Lo.

Because a successful clinical trial can mean billions of dollars in revenues, small changes in PoS can lead to very different business decisions. Therefore, having timely and accurate measures of PoS is critical - and often, these better measures of risk and reward allow investors to put more capital to work.

The overall estimated PoS for industry-sponsored vaccine programs is about 40%, which is the highest among all disease groups (by comparison, the PoS of cancer trials is, historically, less than 5%), and 16.3% for industry-sponsored nonvaccine, anti-infective programs. Viruses involved in recent outbreaks--Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), Ebola, and Zika--have had 45 nonvaccine and 35 vaccine development programs initiated over the past two decades, and there have been only two approved vaccines to date (for Ebola). This points to a clear need for new policies to address this gap.

"As governments around the world begin to formulate a more systematic strategy for dealing with pandemics beyond COVID-19, these estimates can be used by policymakers to identify areas most likely to be underserved by private sector engagement and in need of public sector support," said Wong, the study's lead author. These results are part of Project ALPHA (Analytics for Life-sciences Professionals and Healthcare Advocates) - an ongoing initiative at the MIT Laboratory for Financial Engineering (LFE) where Lo is director - to help make the biomedical funding ecosystem more efficient. "We now provide this information on a regular basis, it's not just a one-shot deal," Lo says. Users can obtain the most current PoS estimates at https://projectalpha.mit.edu.

Shomesh Chaudhuri, Andrew W Lo, Danying Xiao, Qingyang Xu.
Bayesian Adaptive Clinical Trials for Anti-Infective Therapeutics During Epidemic Outbreaks.
Harvard Data Science Review, 2020. doi: 10.1162/99608f92.7656c213

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...