Electronic Skin Fully Powered by Sweat can Monitor Health

One of the ways we experience the world around us is through our skin. From sensing temperature and pressure to pleasure or pain, the many nerve endings in our skin tell us a great deal.

Our skin can also tell the outside world a great deal about us as well. Moms press their hands against our foreheads to see if we have a fever. A date might see a blush rising on our cheeks during an intimate conversation. People at the gym might infer you are having a good workout from the beads of sweat on you.

But Caltech's Wei Gao, assistant professor in the Andrew and Peggy Cherng department of Medical Engineering wants to learn even more about you from your skin, and to that end, he has developed an electronic skin, or e-skin, that is applied directly on top of your real skin. The e-skin, made from soft, flexible rubber, can be embedded with sensors that monitor information like heart rate, body temperature, levels of blood sugar and metabolic byproducts that are indicators of health, and even the nerve signals that control our muscles. It does so without the need for a battery, as it runs solely on biofuel cells powered by one of the body's own waste products.

"One of the major challenges with these kinds of wearable devices is on the power side," says Gao. "Many people are using batteries, but that's not very sustainable. Some people have tried using solar cells or harvesting the power of human motion, but we wanted to know, 'Can we get sufficient energy from sweat to power the wearables?' and the answer is yes."

Gao explains that human sweat contains very high levels of the chemical lactate, a compound generated as a by-product of normal metabolic processes, especially by muscles during exercise. The fuel cells built into the e-skin absorb that lactate and combine it with oxygen from the atmosphere, generating water and pyruvate, another by-product of metabolism. As they operate, the biofuel cells generate enough electricity to power sensors and a Bluetooth device similar to the one that connects your phone to your car stereo, allowing the e-skin to transmit readings from its sensors wirelessly.

"While near-field communication is a common approach for many battery-free e-skin systems, it could be only used for power transfer and data readout over a very short distance," Gao says. "Bluetooth communication consumes higher power but is a more attractive approach with extended connectivity for practical medical and robotic applications."

Devising a power source that could run on sweat was not the only challenge in creating the e-skin, Gao says; it also needed to last a long time with high power intensity with minimal degradation. The biofuel cells are made from carbon nanotubes impregnated with a platinum/cobalt catalyst and composite mesh holding an enzyme that breaks down lactate. They can generate continuous, stable power output (as high as several milliwatts per square centimeter) over multiple days in human sweat.

Gao says the plan is to develop a variety of sensors that can be embedded in the e-skin so it can be used for multiple purposes.

"We want this system to be a platform," he says. "In addition to being a wearable biosensor, this can be a human-machine interface. The vital signs and molecular information collected using this platform could be used to design and optimize next-generation prosthetics."

You Yu, Joanna Nassar, Changhao Xu, Jihong Min, Yiran Yang, Adam Dai, Rohan Doshi, Adrian Huang, Yu Song, Rachel Gehlhar, Aaron D Ames, Wei Gao.
Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces.
Science Robotics, 2020. doi: 10.1126/scirobotics.aaz7946

Most Popular Now

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...