Concerns over 'Exaggerated' Study Claims of AI Outperforming Doctors

Many studies claiming that artificial intelligence is as good as (or better than) human experts at interpreting medical images are of poor quality and are arguably exaggerated, posing a risk for the safety of 'millions of patients' warn researchers in The BMJ.

Their findings raise concerns about the quality of evidence underpinning many of these studies, and highlight the need to improve their design and reporting standards.

Artificial intelligence (AI) is an innovative and fast moving field with the potential to improve patient care and relieve overburdened health services. Deep learning is a branch of AI that has shown particular promise in medical imaging.

The volume of published research on deep learning is growing, and some media headlines that claim superior performance to doctors have fuelled hype for rapid implementation. But the methods and risk of bias of studies behind these headlines have not been examined in detail.

To address this, a team of researchers reviewed the results of published studies over the past 10 years, comparing the performance of a deep learning algorithm in medical imaging with expert clinicians.

They found just two eligible randomised clinical trials and 81 non-randomised studies.

Of the non-randomised studies, only nine were prospective (tracking and collecting information about individuals over time) and just six were tested in a 'real world' clinical setting.

The average number of human experts in the comparator group was just four, while access to raw data and code (to allow independent scrutiny of results) was severely limited.

More than two thirds (58 of 81) studies were judged to be at high risk of bias (problems in study design that can influence results), and adherence to recognised reporting standards was often poor.

Three quarters (61 studies) stated that performance of AI was at least comparable to (or better than) that of clinicians, and only 31 (38%) stated that further prospective studies or trials were needed.

The researchers point to some limitations, such as the possibility of missed studies and the focus on deep learning medical imaging studies so results may not apply to other types of AI.

Nevertheless, they say that at present, "many arguably exaggerated claims exist about equivalence with (or superiority over) clinicians, which presents a potential risk for patient safety and population health at the societal level."

Overpromising language "leaves studies susceptible to being misinterpreted by the media and the public, and as a result the possible provision of inappropriate care that does not necessarily align with patients' best interests," they warn.

"Maximising patient safety will be best served by ensuring that we develop a high quality and transparently reported evidence base moving forward," they conclude.

Myura Nagendran, Yang Chen, Christopher A Lovejoy, Anthony C Gordon, Matthieu Komorowski, Hugh Harvey, Eric J Topol, John P A Ioannidis, Gary S Collins, Mahiben Maruthappu.
Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies.
BMJ 2020. doi: 10.1136/bmj.m689.

Most Popular Now

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...