Fighting Hand Tremors: First comes AI, then Robots

Robots hold promise for a large number of people with neurological movement disorders severely affecting the quality of their lives. Now researchers have tapped artificial intelligence techniques to build an algorithmic model that will make the robots more accurate, faster, and safer when battling hand tremors.

Their model, which is ready for others to deploy, appears this month in Scientific Reports, an online journal of Nature. The international team reports the most robust techniques to date to characterize pathological hand tremors symptomatic of the common and debilitating motor problems affecting a large number of aging adults. One million people throughout the world have been diagnosed with Parkinson's disease, just one of the neurodegenerative diseases that can cause hand tremors.

While technology such as sophisticated wearable exoskeleton suits and neurorehabilitative robots could help people offset some involuntary movements, these robotic assistants need to precisely predict involuntary movements in real-time - a lag of merely 10 or 20 milliseconds can thwart effective compensation by the machine and in some cases may even jeopardize safety.

Enter the big dataset collected at the London (Ontario) Movement Disorders Centre and the team's pioneering machine learning model, which they named PHTNet, for "Pathological Hand Tremors using Recurrent Neural Networks". Using small sensors, they analyzed the hand motions of 81 patients in their 60s and 70s, then applied a novel data-driven deep neural network modeling technique to extract predictive information applicable to all patients.

Their paper details the artificial intelligence model and training, and reports a 95% confidence rate over 24,300 samples.

"Our model is already at the ready-to-use stage, available to neurologists, researchers, and assistive technology developers," said co-author S. Farokh Atashzar, who is now an NYU Tandon assistant professor and who began exploring the use of robots coupled with artificial intelligence while conducting doctoral and post-doctoral research in Canada. "It requires substantial computational power, so we plan to develop a low-power, cloud-computing approach that will allow wearable robots and exoskeletons to operate in patients' homes. We also hope to develop models that require less computational power and add other biological factors to the inputs."

Soroosh Shahtalebi, Seyed Farokh Atashzar, Olivia Samotus, Rajni V. Patel, Mandar S. Jog & Arash Mohammadi.
PHTNet: Characterization and Deep Mining of Involuntary Pathological Hand Tremor using Recurrent Neural Network Models.
Scientific Reports volume 10, Article number: 2195, 2020. 10.1038/s41598-020-58912-9

Most Popular Now

App Determines COVID-19 Disease Severity…

A new mobile app can help clinicians determine which patients with the novel coronavirus (COVID-19) are likely to have severe cases. Created by researchers at NYU College of Dentistry, the...

NHS Trust Revolutionises Access to Menta…

North Staffordshire Combined Healthcare NHS Trust has selected the DXC Open Health Connect platform from DXC Technology (NYSE: DXC) and is creating a blueprint that could dramatically reduce mental health...

FDA Permits Marketing of First Game-Base…

The U.S. Food and Drug Administration (FDA) permitted marketing of the first game-based digital therapeutic device to improve attention function in children with attention deficit hyperactivity disorder (ADHD). The prescription-only...

HealthTunes Launches iOS App to Deliver …

HealthTunes has announceed the launch of the iOS App specifically created to help alleviate the mental health suffering of frontline healthcare workers. After months of fighting the pandemic, many frontline...

Philips Announces Collaboration with Ame…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it has once again joined forces with the American Telemedicine Association (ATA) to help further the...

Bluetooth Technology, the Best Ally to D…

"Tracers have been and are essential to manage the pandemic. Today, the tracing is done by hand and this work is slow and inaccurate. However, as we have seen, technology...

Successful Debut for DMEA sparks

16 - 18 June 2020, Berlin, Germany. DMEA sparks opened, featuring a wide range of topics. Federal Minister of Health Jens Spahn kicked off events. In his interview he focused on...

Digital Mental Health support to be Prov…

SilverCloud, the leading digital therapeutics provider, has partnered with mental health charity Northpoint Wellbeing to co-develop a new digital therapy programme to alleviate anxiety in young people. Coming at a...

Siemens Healthineers Offers Flexible Tel…

With its teamplay myCare Companion software, the company is bringing a new and flexible telemedicine solution to the market that enables remote care for patients with chronic diseases. The teamplay...

Siemens Healthineers Uses Artificial Int…

Siemens Healthineers introduces Ysio X.pree(1), the world's first intelligent X-ray system with integrated AI for optimizing the daily routine of image acquisition in radiography. To assist radiologists with the subsequent...

Computer Modelling Predicts where Vaccin…

Researchers have developed a model that can estimate regional disease burden and the impact of vaccination, even in the absence of robust surveillance data, a study in eLife reveals. The report...

Andrea Fiumicelli Appointed as a CEO of …

Dedalus Group, leader in Europe and one of the world's leading players in clinical and healthcare information systems supporting clinical professionals and healthcare facilities thanks to a wide portfolio of...