Digital Heart Model will Help Predict Future Heart Health

In recent times, researchers have increasing found that the power of computers and artificial intelligence is enabling more accurate diagnosis of a patient's current heart health and can provide an accurate projection of future heart health, potential treatments and disease prevention.

Now in a paper published in European Heart Journal, researchers from King's College London, leading the Personalised In-Silico Cardiology consortium, show how linking computer and statistical models can improve clinical decisions relating to the heart. Lead researcher Dr Pablo Lamata, from King's College London, said: "We found that making appropriate clinical decisions is not only about data, but how to combine data with the knowledge that we have built up through years of research."

The team have coined the phrase the Digital Twin to describe this integration of the two models, a computerised version of our heart which represents human physiology and individual data.

"The Digital Twin will shift treatment selection from being based on the state of the patient today to optimising the state of the patient tomorrow," the researchers wrote in the paper.

This could mean that a trip to the doctor's office could be a more digital experience. "The idea is that the electronic health record will be growing into a more detailed description of what we could call a digital avatar, a digital representation of how the heart is working," said Dr Lamata.

Mechanistic models see researchers applying the laws of physics and maths to simulate how the heart will behave. Statistical models require researchers to look at past data to see how the heart will behave in similar conditions and infer how it will do it over time. Models can pinpoint the most valuable piece of diagnostic data and can also reliably infer biomarkers that cannot be directly measured or that require invasive procedures.

Dr Lamata said more information about how the heart is behaving could be retrieved by using these models. "We already extract numbers from the medical images and signals, but we can also combine them through a model to infer something that we don't see in the data, like the stiffness of the heart. We obviously cannot touch a beating heart to know the stiffness, but we can give these models with the rules and laws of the material properties to infer that importance piece of diagnostic and prognostic information. The stiffness of the heart becomes another key biomarker that will tell us how the health of the heart is coping with disease."

The team of researchers believe that the power of computational models in cardiovascular medicine could also provide us with more control over our daily heart health. Much like the popularity of wearable monitoring devices, a digital twin of our hearts could inform about its current health and alert wearers to any risk factors. "It is also the vision of people being more empowered and being more in control and aware of the impact of their lifestyle choices in the health of their hearts. We will have more wearables that can monitor aspects of our health rhythm, heart sounds or level of physical activity. This unit is also talking to the digital twin that lives in the hospital," said Dr Lamata.

"It's like the weather: understanding better how it works, helps us to predict it. And with the heart, models will also help us to predict how better or worse it will get if we interfere with it."

Jorge Corral-Acero, Francesca Margara, Maciej Marciniak, Cristobal Rodero, Filip Loncaric, Yingjing Feng, Andrew Gilbert, Joao F Fernandes, Hassaan A Bukhari, Ali Wajdan, Manuel Villegas Martinez, Mariana Sousa Santos, Mehrdad Shamohammdi, Hongxing Luo, Philip Westphal, Paul Leeson, Paolo DiAchille, Viatcheslav Gurev, Manuel Mayr, Liesbet Geris, Pras Pathmanathan, Tina Morrison, Richard Cornelussen, Frits Prinzen, Tammo Delhaas, Ada Doltra, Marta Sitges, Edward J Vigmond, Ernesto Zacur, Vicente Grau, Blanca Rodriguez, Espen W Remme, Steven Niederer, Peter Mortier, Kristin McLeod, Mark Potse, Esther Pueyo, Alfonso Bueno-Orovio, Pablo Lamata.
The ‘Digital Twin’ to enable the vision of precision cardiology.
European Heart Journal, 2020. doi: 10.1093/eurheartj/ehaa159.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...