Artificial Intelligence-Based Algorithm for Intensive Care of Traumatic Brain Injury

Traumatic brain injury (TBI) is a significant global cause of mortality and morbidity with an increasing incidence, especially in low-and-middle income countries. The most severe TBIs are treated in intensive care units (ICU), but in spite of the proper and high-quality care, about one in three patients dies.

Patients that suffer from severe TBI are unconscious, which makes it challenging to accurately monitor the condition of the patient during intensive care. In the ICU, many tens of variables are continuously monitored (e.g. intracranial pressure, mean arterial pressure and cerebral perfusion pressure) that indirectly give information regarding the condition of the patient.

However, only one variable, such as intracranial pressure, may yield hundreds of thousands of data points per day. Thus, it is impossible for the human brain to comprehend the resulting millions of daily collected data points from all monitored data. This is why researchers at Helsinki University Hospital (HUS) started to develop an artificial intelligence (AI) based algorithm that could help doctors treat patients with severe TBI. At its best, such an algorithm could predict the outcome of the individual patient and give objective data regarding the condition and prognosis of the patient and how it changes during treatment.

"A dynamic prognostic model like this has not been presented before. Although this is a proof-of-concept and it will still take some time before we can implement algorithms like this into daily clinical practice, our study reflects how and into what direction modern intensive care is evolving", says Rahul Raj, Adjunct Professor of Experimental Neurosurgery from HUS and one of the authors of the paper.

The algorithms can predict the probability of the patient dying within 30-days with accuracy of 80-85%.

"We have developed two separate algorithms. The first algorithm is simpler and is based only upon objective monitor data. The second algorithm is slightly more complex and includes data regarding the level of consciousness, measured by the widely used Glasgow Coma Scale score. As expected, the accuracy of the more complex algorithm is slightly better than for the simpler algorithm. Still, the accuracy of both algorithms is surprisingly good, considering that the simpler model is based upon only three main variables and the more complex upon five main variables", tells Eetu Pursiainen, Data Scientist from the Analytics and AI Development Department at HUS, one of the authors and main coders of the algorithms.

In the future, the algorithms still have to be validated in national and international external datasets.

"Finland is one of the world leaders in artificial intelligence solutions in specialized healthcare and Helsinki University Hospital, as one of the largest hospitals in Europe, plays an important role in bringing Finnish excellence into the world. Because of this, we think that it is important act ethically and share our algorithms openly and free of charge for further development, both nationally and internationally", states Miikka Korja, Chair of the HUS Artificial Intelligence Steering Group and Adjunct Professor of Neurosurgery at the University of Helsinki.

Rahul Raj, Teemu Luostarinen, Eetu Pursiainen, Jussi P Posti, Riikka SK Takala, Stepani Bendel, Teijo Konttila, Miikka Korja.
Machine learning-based dynamic mortality prediction after traumatic brain injury.
Sci Rep 9, 17672 (2019). doi: 10.1038/s41598-019-53889-6.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...