New X-ray Technology could Revolutionize How Doctors Identify Abnormalities

Using ground-breaking technology, researchers at the University of Maryland, Baltimore County (UMBC) and University of Baltimore (UMB) are testing a new method of X-ray imaging that uses color to identify microfractures in bones. Microfractures were previously impossible to see using standard X-ray imaging. The findings associated with this advancement in color (spectral) CT (computed tomography) imaging are published in Advanced Functional Materials.

Since the discovery of X-rays in 1895, the basics of the technology have remained consistent. Doctors and scientists use them to see dense materials, like bones, but the technology's capabilities have been limited. Dipanjan Pan, professor of chemical, biochemical and environmental engineering UMBC, and professor of radiology at UMB, is the corresponding author of this new study. Looking ahead to the next generation of X-ray technology, he asks, "How can we detect a bone microcrack, something that is not visible using X-ray imaging?"

Pan explains that to examine this question, his lab developed nanoparticles that navigate and attach specifically to areas where microcracks exist. He likes to call them "GPS particles." They started conducting this research at the University of Illinois Urbana-Champaign. The researchers have programmed the particles to latch onto the correct area of the microcrack. Once the particles attach to microcracks, they remain there, which is crucial to the imaging process.

The particles contain the element hafnium. A new X-ray-based technique developed by a New Zealand-based company MARS then take CT images of the body and the hafnium particles appear in color. This provides a very clear image of where the bone microcracks are located.

Hafnium is used because its composition makes it detectable to X-rays, generating a signal that can then be used to image the cracks. Pan's lab showed that hafnium is stable enough to be used in testing involving living creatures, and can be excreted safely from the body. The lab has not yet begun testing on humans, but the technology to do so may be available as soon as 2020.

As for other applications for spectral CT imaging with this hafnium breakthrough, the research suggests that this methodology could be used to detect much more serious problems. For example, in order to determine whether a person has a blockage in their heart, doctors often will perform a stress test to detect abnormalities, which comes with a significant amount of risk. One day in the near future, doctors may be able to use spectral CT to determine whether there is a blockage in organs.

"Regular CT does not have a soft-tissue contrast. It cannot tell you where your blood vessels are. Spectral CT can help solve that problem," Pan explains. He notes that although more research is needed to begin using spectral CT in this way, he anticipates that it will be a "tremendous" new tool for radiologists. Dr. Fatemeh Ostadhossein, a recent graduate of the Pan lab, was first author on this study.

Ostadhossein F, Tripathi I, Benig L, LoBato D, Moghiseh M, Lowe C, Raja A, Butler A, Panta R, Anjomrouz M, Chernoglazov A, Pan D.
Multi‐"Color" Delineation of Bone Microdamages Using Ligand‐Directed Sub‐5 nm Hafnia Nanodots and Photon Counting CT Imaging.
Adv. Funct. Mater. 2019, doi: 10.1002/adfm.201904936.

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...