AI could Offer Warnings about Serious Side Effects of Drug-Drug Interactions

The more medications a patient takes, the greater the likelihood that interactions between those drugs could trigger negative side effects, including long-term organ damage and even death. Now, researchers at Penn State have developed a machine learning system that may be able to warn doctors and patients about possible negative side effects that might occur when drugs are mixed.

In a study, researchers designed an algorithm that analyzes data on drug-drug interactions listed in reports - compiled by the Food and Drug Administration and other organizations - for use in a possible alert system that would let patients know when a drug combination could prompt dangerous side effects.

"Let's say I'm taking a popular over-the-counter pain reliever and then I'm put on blood pressure medicine, and these medications have an interaction with each other that, in turn, affects my liver," said Soundar Kumara, the Allen E. Pearce and Allen M. Pearce Professor of Industrial Engineering, Penn State. "Essentially, what we have done, in this study, is to collect all of the data on all the diseases related to the liver and see what drugs interact with each other to affect the liver."

Drug-drug interaction problems are significant because patients are frequently prescribed multiple drugs and they take over-the-counter medicine on their own, added Kumara, who also is an affiliate of the Institute for CyberScience, which provides supercomputing resources for Penn State researchers.

"This study is of very high importance," said Kumara. "Most patients are not on one single drug. They're on multiple drugs. A study like this is of immense use to these people."

To create the alert system, the researchers relied on an autoencoder model, which is a type of artificial neural network that is loosely designed on how the human brain processes information. Traditionally, computers require labeled data, which means people need to describe the data for the system, to produce results. For drug-drug interactions, it might require programmers to label data from thousands of drugs and millions of different combinations of possible interactions. The autoencoder model, however, is suited for semi-supervised algorithms, which means it can use both data that is labeled by people, and unlabeled data.

The high number of possible adverse drug-drug interactions, which can range from minor to severe, may inadvertently cause doctors and patients to ignore alerts, which the researchers call "alert fatigue." In order to avoid alert fatigue, the researchers identified only interactions that would be considered high priority, such as life-threatening, disability, hospitalization and required intervention.

Kumara said that analyzing how drugs interact is the first step. Further development and refinement of the technology could lead to more precise - and even more personalized - drug interaction alerts.

"The reactions are not independent of these chemicals interacting with each other - that's the second level," said Kumara. "The third level of this is the chemical-to-chemical interactions with the genomic data of the individual patient."

The researchers, who released their findings in the August 2019 issue of Biomedical and Health Informatics, used self-reported data from the FDA Adverse Event Reporting System and information on potentially severe drug-drug interactions from the Office of the National Coordinator for Health Information Technology. They also used information from online databases at DrugBank and Drugs.com. Duplicate reports and reports about non-serious interactions were removed.

The list included about 2,891 drugs, or approximately 110,495 drug combinations. The researchers found a total of 1,740,770 reports on serious health outcomes from drug-drug interactions.

Ning Liu, Cheng-Bang Chen, Soundar Kumara.
Semi-Supervised Learning Algorithm for Identifying High-Priority Drug-Drug Interactions Through Adverse Event Reports.
IEEE Journal of Biomedical and Health Informatics, 2 August 2019. doi: 10.1109/JBHI.2019.2932740.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...