Combination of AI & Radiologists more Accurately Identified Breast Cancer

An artificial intelligence (AI) tool - trained on roughly a million screening mammography images - identified breast cancer with approximately 90 percent accuracy when combined with analysis by radiologists, a new study finds. Led by researchers from NYU School of Medicine and the NYU Center for Data Science, the study examined the ability of a type of AI, a machine learning computer program, to add value to the diagnoses reached by a group of 14 radiologists as they reviewed 720 mammogram images.

"Our study found that AI identified cancer-related patterns in the data that radiologists could not, and vice versa," says senior study author Krzysztof J. Geras, PhD, assistant professor in the Department of Radiology at NYU Langone.

"AI detected pixel-level changes in tissue invisible to the human eye, while humans used forms of reasoning not available to AI," adds Dr. Geras, also an affiliated faculty member at the NYU Center for Data Science. "The ultimate goal of our work is to augment, not replace, human radiologists."

In 2014, more than 39 million mammography exams were performed in the United States to screen women (without symptoms) for breast cancer and determine those in need of closer follow-up. Women whose test results yield abnormal mammography findings are referred for biopsy, a procedure that removes a small sample of breast tissue for laboratory testing.

A New Tool to Identify Breast Cancer

In the new study, the research team designed statistical techniques that let their program "learn" how to get better at a task without being told exactly how. Such programs build mathematical models that enable decision-making based on data examples fed into them, with the program getting "smarter" as it reviews more and more data.

Modern AI approaches, inspired by the human brain, use complex circuits to process information in layers, with each step feeding information into the next, and assigning more or less importance to each piece of information along the way.

Published online recently by the journal IEEE Transactions on Medical Imaging, the current study authors trained their AI tool on many images matched with the results of biopsies performed in the past. Their goal was to enable the tool to help radiologists reduce the number biopsies needed moving forward. This can only be achieved, says Dr. Geras, by increasing the confidence that physicians have in the accuracy of assessments made for screening exams (for example, reducing false-positive and false-negative results).

For the current study, the research team analyzed images that had been collected as part of routine clinical care at NYU Langone Health over seven years, sifting through the collected data and connecting the images with biopsy results. This effort created an extraordinarily large dataset for their AI tool to train on, say the authors, consisting of 229,426 digital screening mammography exams and 1,001,093 images. Most databases used in studies to date have been limited to 10,000 images or fewer.

Thus, the researchers trained their neural network by programming it to analyze images from the database for which cancer diagnoses had already been determined. This meant that researchers knew the "truth" for each mammography image (cancer or not) as they tested the tool's accuracy, while the tool had to guess. Accuracy was measured in the frequency of correct predictions.

In addition, the researchers designed the study AI model to first consider very small patches of the full resolution image separately to create a heat map, a statistical picture of disease likelihood. Then the program considers the entire breast for structural features linked to cancer, paying closer attention to the areas flagged in the pixel-level heat map.

Rather than have the researchers identify image features for their AI to search for, the tool is discovering on its own which image features increase prediction accuracy. Moving forward, the team plans to further increase this accuracy by training the AI program on more data, perhaps even identifying changes in breast tissue that are not yet cancerous but have the potential to be.

"The transition to AI support in diagnostic radiology should proceed like the adoption of self-driving cars - slowly and carefully, building trust, and improving systems along the way with a focus on safety," says first author Nan Wu, a doctoral candidate at the NYU Center for Data Science.

Nan Wu, Jason Phang, Jungkyu Park, Yiqiu Shen, Zhe Huang, Masha Zorin, Stanisław Jastrzębski, Thibault Févry, Joe Katsnelson, Eric Kim, Stacey Wolfson, Ujas Parikh, Sushma Gaddam, Leng Leng Young Lin, Kara Ho, Joshua D. Weinstein, Beatriu Reig, Yiming Gao, Hildegard Toth Kristine Pysarenko, Alana Lewin, Jiyon Lee, Krystal Airola, Eralda Mema, Stephanie Chung, Esther Hwang, Naziya Samreen, S Gene Kim, Laura Heacock, Linda Moy, Kyunghyun Cho.
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening.
IEEE Transactions on Medical Imaging. doi: 10.1109/TMI.2019.2945514.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...