Low business R&D a major threat to the European knowledge-based economy

European Commission presents a new publication on Europe's position in research and innovation. The "Key figures 2007 on Science, Technology and Innovation" shows that R&D intensity (R&D expenditure as % of GDP) in Europe has stagnated since the mid-nineties, while major competitors such as Japan, China or South Korea have been able to increase substantially their R&D effort, shaping a world where knowledge is more evenly distributed than ever before. Moreover, the R&D investment deficit against the US has remained constant over recent years. In particular, the low level of business R&D in the EU remains worrying. Key Figures 2007 shows that differences in the industrial structure of the EU compared to countries such as the US are the main cause for this low level of business R&D, with the EU having a smaller high-tech industrial sector, which usually has much higher levels of R&D spending. The new actions taken in Europe since 2005 in the context of the revised Lisbon Strategy need to be implemented if Europe is to successfully face this challenge.

"Knowledge is a key component of competitiveness" said European Science and Research Commissioner Janez Potočnik. "If our businesses are to be at the leading edge in the future, they need to invest in knowledge now. And governments need to put in place the appropriate measures to help them do so."

Since the last Key Figures in 2005, policy-makers have launched new initiatives at both EU and Member State level in order to boost the "Europe of Knowledge": The ambitious Seventh Framework Programme (FP7) has been adopted and is now underway with a substantially higher budget than its predecessor, FP6. Member States have made new and far-reaching commitments within the framework of the renewed Lisbon strategy by setting future R&D intensity targets. The recently published ERA Green Paper has launched a wide-ranging debate on the future orientations of the European Research Area (ERA).

Key Figures 2007 presents data and statistics on science, technology and innovation up to 2005, thus predating these recent initiatives and renewed commitments. It shows however that these recent policy developments are now more than ever needed, for at least five reasons:

  • The EU is part of a globalised world where knowledge is more evenly distributed than ever before. High competition on this level requires the EU to adapt and make the ERA more attractive to the rest of the world. The Key Figures 2007 show that countries like China already act as strong competitors in the globalised knowledge-based economy.
  • The report shows that EU R&D intensity has stagnated since the mid-nineties. In 2005, only 1.84% of GDP was spent on R&D in EU-27 and it still remains at a lower level than in the US, Japan or South Korea. Also new emerging economies such as China are rapidly catching-up. If current trends last, China will have caught up with the EU by 2009 in terms of R&D intensity. However, high R&D-intensive EU Member States such as Austria, Germany, Finland and Denmark show that it is possible to maintain and increase R&D intensity above 2% and even 3% of GDP.
  • Over 85% of the R&D intensity gap between the EU and its main competitors is caused by differences in business sector R&D financing. The low level of private R&D expenditure in Europe in comparison with the US is mostly due to differences in industrial structure and to the smaller size of the high-tech industry in the EU.
  • Regarding research excellence, although the EU is the world's largest producer of scientific knowledge, the impact of European science is lower than that of the US. Europe lags behind the US in all scientific disciplines in terms of citation impact scores and highly-cited publications. Also, EU universities are very much underrepresented at the top of a ranking based on bibliometric indicators of the world's largest universities. In addition, the linkage between technology (patented inventions) and the science base is much weaker in the EU than in the US. Europe has a difficulty in breaking through in new high-tech industries.
  • Even though private sector funds are a notable part of R&D, the public sector still has a major role to play. Public R&D funding in the EU must be sustained in order for private R&D activities to develop further and grow on a solid science base. The Key Figures 2007 reveal that high R&D intensity can be achieved when high contributions from the private sector go hand in hand with high levels of public funding. For those economies that are catching up, government funding of R&D is critical for creating and developing S&T capabilities.
For further information, please visit:
http://ec.europa.eu/invest-in-research/monitoring/statistical01_en.htm

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...