Virtual Patients and In Silico Clinical Studies Improve Blue Light Treatment for Psoriasis

A new study supports the use of virtual patients and in silico clinical studies to evaluate the effectiveness of blue light to reduce the symptoms of psoriasis. Researchers also demonstrated that this in silico approach can be used to improve the treatment response of patients with psoriasis to blue light by modifying the settings of the therapeutic protocol, as reported in the study published in Systems Medicine, an open access journal from Mary Ann Liebert, Inc., publishers. Click here to read the full article free on the Systems Medicine: Journal of Medical Systems Biology and Network Medicine website through September 5, 2019.

"In silico Clinical Studies on the Efficacy of Blue Light for Treating Psoriasis in Virtual Patients" was coauthored by Zandra Félix Garza, Peter Hilbers, and Natal van Riel, Eindhoven University of Technology, The Netherlands, and Joerg Liebmann and Matthias Born, Philips Electronics Netherlands BV, Eindhoven. The researchers note that the current computational model for studying the efficacy of blue light therapy only reproduces the response in the average patient in clinical trials and does not take into account individual variations amongst patients. Use of a computational model combined with a refined pool of virtual patients can adequately capture the patient variability in the response to treatment with blue light and the decrease in disease severity seen in previous clinical investigations. The authors suggest that a minimum of 2,500 virtual patients, which they refined down from an initial pool of 500,000 virtual patients, are needed to reproduce the responses seen in clinical investigations.

"This is a highly promising approach towards using statistical learning on virtual patient populations to draw actionable clinical conclusions on real patients, and thus a major step forward to precision medicine," says Co-Editor-in-Chief Prof. Dr. Jan Baumbach from Technical University of Munich.

Most Popular Now

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...