Cardio-Respiratory Synchronization may Represent a New Measure of Health and Fitness

Researchers from the School of Engineering at the University of Warwick have managed to expand the knowledge of the cardio-respiratory system after conducting an experiment measuring heart rate during fast-paced breathing. Published in Scientific Reports, the paper 'Control of heart rate through guided high-rate breathing' shows how researchers found it is possible to reliably observe a one-to-one relationship between heart beats and breaths, when breathing is controlled at a speed exceeding resting heart rate.

Researchers classified participants’ fitness based upon intensity of physical activity. Regular exercise requiring rhythmic breathing, such as swimming or rowing, was suggested to enhance the connection between breathing and heart rate, both muscularly and in the nervous system. Participants were all over 18, with an almost equal spread of male and female.

The experiment required lying in a bed and watching a computer-generated metronome to guide breathing. An initial measurement of heart rate when the participant arrived determined the required metronome speeds for guiding breathing, intended to first match and then exceed their heart rate.

Heart rate was rarely seen to synchronize with breathing when rates should be equivalent, and often increased disproportionately. However, when the frequency of breathing was increased further, heart rate was seen to rise just sufficiently to synchronize the two systems. A one-to-one interaction was observed for all participants in the study.

Athletes in the study naturally found the elevated breathing rate easier to maintain, potentially due to pre-existing experience in rhythmic breathing. The results show that athletes consistently experienced cardio-respiratory synchronization for longer periods, alluding to both the greater influence of a stronger mechanical relationship (heart muscles and lung capacity) and enhanced communication within the nervous system.

It is well understood that when periodic systems interact in a one-to-one relationship, the strength of the relationship is increased. The observation of heart rate increasing to synchronize with the elevated breathing rate during the experiments suggests that the cardio-respiratory system and its control centres in the brain respond in a similar way. It follows that if cardio-respiratory synchronization is more reliably observed in athletes, then the strength of the relationship between breathing and heart rate is greater for these individuals.

With the rise in popularity of fitness training and the increased accessibility of heart rate monitors, these results have potential application in monitoring physiological health over time. Sean Perry, of the School of Engineering at the University of Warwick, comments:

"Cardio-respiratory synchronization provides a potential alternative method for categorising the health of a person's nervous system. Using non-invasive sensors, the strength of the interaction between breathing and heart rate can be measured during guided breathing regimes. Further investigation of this phenomenon could yield benefits for fitness monitoring, in a similar way to heart rate variability."

Sean Perry, Natasha A Khovanova, Igor A Khovanov.
Control of heart rate through guided high-rate breathing.
Scientific Reportsvolume 9, Article number: 1545 (2019). doi: 10.1038/s41598-018-38058-5.

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...