Are Fertility Apps Useful?

For many women of reproductive age, the most common way of assessing their menstrual health and fertility means regular visits to a gynecologist or another clinician. When it comes to evaluating changes in fertility, menstrual health, and quality of life, these visits typically rely on remembering, which can lead to significant inaccuracies in evaluation.

On the other hand, many women today are turning to so-called "fertility awareness method" (FAM) apps to support them in tracking their menstrual cycles. There is a multitude of such apps available, which only demonstrates how popular they've become in recent years.

But how accurate are FAM apps? What do users track? Can they help them and their gynecologists? These are hard to answer for a simple reason: Neither visits nor app use have been systematically studied on a population level to determine and compare their accuracy in evaluating menstrual health and fertility in a meaningful way.

This is what Laura Symul at EPFL's Digital Epidemiology Lab has done. Working with Stanford University (which she has now joined), Symul led a large-scale study on 200,000 users of two FAM apps, Sympto and Kindara. Both apps support the "Sympto-Thermal Method" and facilitate the identification of the fertile and infertile times of a woman's menstrual cycle by taking into account recordings of cervical fluid, body temperature at wake-up, and other biological signs.

The scientists tracked more than 30 million days of observations from over 2.7 million menstrual cycles. The overall study had two aims: First, to see how and what users voluntarily track on FAM apps. Second, to find out if these records allow an accurate detection and estimation of ovulation timing.

In terms of user demographics and behavior, the study found that the typical FAM app user is around 30 years old, lives in a western country (in Europe or Northern America) and has a healthy BMI. App users log their observations more frequently when they also log sexual intercourse, and when you look at them on a population level, reported fertility awareness body signs exhibit temporal patterns that follow very closely those that have been found in small-scale clinical studies.

Analyzing the data, the scientists found that women who were seeking pregnancy recorded Sympto-Thermal measurements every single day for up to 40% of their menstrual cycles. Then, by modeling the data, they found that the average duration and range of the follicular phase, which begins the menstrual cycle and ends at ovulation, were larger than previously reported. In fact, the modeling showed that only 24% of ovulations occur at days 14 to 15 of the cycle. On the other hand, the data showed that the duration and range of the luteal phase - the latter part of the menstrual cycle - matched previous studies.

The findings offer an affordable means for studying the interactions between the menstrual cycle and other physiological systems on a large scale. "Our study provides a common ground for users and their doctors to incorporate digital records in their visits, evaluate their own menstrual patterns and compare them with the statistics we report," says Laura Symul.

She continues: "New technologies, and in particular self-tracking, are changing the way we perceive our bodies and health. Both users and doctors wonder about the opportunities and the usefulness of digital self-tracking. Our study shows that users voluntarily track their menstrual cycle and fertility-related body signs very frequently, and what they track is aligned with what is expected in the vast majority of cases. While these measurements and observations are noisy and not perfectly regular, they provide valuable information for inferring the underlying hormonal changes and timing of ovulation in a way that is scalable both in time and in number of participants."

Marcel Salathé, director of the Digital Epidemiology Lab adds: "The digital epidemiology approach presented here can help to lead to a better understanding of menstrual health and its connection to women's health overall, which has historically been severely under-studied."

Laura Symul, Katarzyna Wac, Paula Hillard, Marcel Salathé.
Assessment of menstrual health status and evolution through mobile apps for fertility awareness.
npj Digital Medicinevolume 2, Article number: 64 (2019), doi: 10.1038/s41746-019-0139-4.

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...