Are Fertility Apps Useful?

For many women of reproductive age, the most common way of assessing their menstrual health and fertility means regular visits to a gynecologist or another clinician. When it comes to evaluating changes in fertility, menstrual health, and quality of life, these visits typically rely on remembering, which can lead to significant inaccuracies in evaluation.

On the other hand, many women today are turning to so-called "fertility awareness method" (FAM) apps to support them in tracking their menstrual cycles. There is a multitude of such apps available, which only demonstrates how popular they've become in recent years.

But how accurate are FAM apps? What do users track? Can they help them and their gynecologists? These are hard to answer for a simple reason: Neither visits nor app use have been systematically studied on a population level to determine and compare their accuracy in evaluating menstrual health and fertility in a meaningful way.

This is what Laura Symul at EPFL's Digital Epidemiology Lab has done. Working with Stanford University (which she has now joined), Symul led a large-scale study on 200,000 users of two FAM apps, Sympto and Kindara. Both apps support the "Sympto-Thermal Method" and facilitate the identification of the fertile and infertile times of a woman's menstrual cycle by taking into account recordings of cervical fluid, body temperature at wake-up, and other biological signs.

The scientists tracked more than 30 million days of observations from over 2.7 million menstrual cycles. The overall study had two aims: First, to see how and what users voluntarily track on FAM apps. Second, to find out if these records allow an accurate detection and estimation of ovulation timing.

In terms of user demographics and behavior, the study found that the typical FAM app user is around 30 years old, lives in a western country (in Europe or Northern America) and has a healthy BMI. App users log their observations more frequently when they also log sexual intercourse, and when you look at them on a population level, reported fertility awareness body signs exhibit temporal patterns that follow very closely those that have been found in small-scale clinical studies.

Analyzing the data, the scientists found that women who were seeking pregnancy recorded Sympto-Thermal measurements every single day for up to 40% of their menstrual cycles. Then, by modeling the data, they found that the average duration and range of the follicular phase, which begins the menstrual cycle and ends at ovulation, were larger than previously reported. In fact, the modeling showed that only 24% of ovulations occur at days 14 to 15 of the cycle. On the other hand, the data showed that the duration and range of the luteal phase - the latter part of the menstrual cycle - matched previous studies.

The findings offer an affordable means for studying the interactions between the menstrual cycle and other physiological systems on a large scale. "Our study provides a common ground for users and their doctors to incorporate digital records in their visits, evaluate their own menstrual patterns and compare them with the statistics we report," says Laura Symul.

She continues: "New technologies, and in particular self-tracking, are changing the way we perceive our bodies and health. Both users and doctors wonder about the opportunities and the usefulness of digital self-tracking. Our study shows that users voluntarily track their menstrual cycle and fertility-related body signs very frequently, and what they track is aligned with what is expected in the vast majority of cases. While these measurements and observations are noisy and not perfectly regular, they provide valuable information for inferring the underlying hormonal changes and timing of ovulation in a way that is scalable both in time and in number of participants."

Marcel Salathé, director of the Digital Epidemiology Lab adds: "The digital epidemiology approach presented here can help to lead to a better understanding of menstrual health and its connection to women's health overall, which has historically been severely under-studied."

Laura Symul, Katarzyna Wac, Paula Hillard, Marcel Salathé.
Assessment of menstrual health status and evolution through mobile apps for fertility awareness.
npj Digital Medicinevolume 2, Article number: 64 (2019), doi: 10.1038/s41746-019-0139-4.

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...