Artificial Intelligence Sheds New Light on Cell Developmental Dynamics

What happens inside a cell when it is activated, changing, or responding to variations in its environment? Researchers from the VIB-UGent Center for Inflammation Research have developed a map of how to best model these cellular dynamics. Their work not only highlights the outstanding challenges of tracking cells throughout their growth and lifetime, but also pioneers new ways of evaluating computational biology methods that aim to do this.

Cells are constantly changing: they divide, change, or are activated by the environment. Cells can take many alternative paths in each of these processes and they have to decide which direction to follow based on internal and external clues. Studying these cellular trajectories has recently become a lot easier thanks to advances in single-cell technologies, which allows scientists to profile individual cells at unprecedented detail. Combined with computational methods, it is possible to see the different trajectories that cells take inside a living organism and have a closer look at what goes wrong in diseases.

Yvan Saeys (VIB-Ghent University), heading the research group, explains: "If you would take a random sample of thousands of cells that are changing, you would see that some are very similar, while others are really different. Trajectory inference methods are a novel class of Artificial Intelligence techniques that unveil complex structures such as cell trajectories in a data-driven way. In recent years there has been a proliferation of tools that construct such a trajectory. But the availability of a wide variety of such tools makes it very difficult for researchers to find the right one that will work in the biological system they are studying."

Two researchers in the Saeys lab, Robrecht Cannoodt and Wouter Saelens, set out to bring more clarity to the field by evaluating and comparing the available tools. Robrecht Cannoodt says: "From the start, we envisioned to make the benchmark as comprehensive as possible by including almost all methods, a varied set of datasets and metrics. We included the nitty-gritty details, such as the installation procedure, and put everything together in one large figure - a funky heatmap as we like to call it."

Wouter Saelens adds: "Apart from improving the trajectory inference field, we also attempted to improve the way benchmarking is done. In our study we ensured an easily reproducible and extensible benchmarking using the most recent software technologies such as containerization and continuous integration. In that way, our benchmarking study is not the final product, but only the beginning of accelerated software development and ultimately better understanding of our biomedical data."

Based on the benchmarking results, the team developed a set of user guidelines that can assist researchers in selecting the most suitable method for a specific research question, as well as an interactive app. This is the first comprehensive assessment of trajectory inference methods. In the future, the team plans to add a detailed parameter tuning procedure. The pipeline and tools for creating trajectories are freely available on dynverse.org, and the team welcomes discussion aimed at further development.

Wouter Saelens, Robrecht Cannoodt, Helena Todorov, Yvan Saeys.
A comparison of single-cell trajectory inference methods.
Nature Biotechnology (2019). doi: 10.1038/s41587-019-0071-9.

Most Popular Now

IBM Watson Health Recognizes Top-Perform…

IBM (NYSE: IBM) Watson Health® announced its 2020 Fortune/IBM Watson Health 100 Top Hospitals list and 15 Top Health Systems award winners, naming the top-performing hospitals and health systems in...

Chatbots can Ease Medical Providers' Bur…

COVID-19 has placed tremendous pressure on health care systems, not only for critical care but also from an anxious public looking for answers. Research from the Indiana University Kelley School...

Abbott Receives FDA Approval for New Hea…

Abbott (NYSE: ABT) announced that the U.S. Food and Drug Administration (FDA) has approved the company's next-generation Gallant™ implantable cardioverter defibrillator (ICD) and cardiac resynchronization therapy defibrillator (CRT-D) devices. The...

The New Tattoo: Drawing Electronics on S…

One day, people could monitor their own health conditions by simply picking up a pencil and drawing a bioelectronic device on their skin. In a new study, University of Missouri...

Towards an AI Diagnosis Like the Doctor…

Artificial intelligence (AI) is an important innovation in diagnostics, because it can quickly learn to recognize abnormalities that a doctor would also label as a disease. But the way that...

SARS-CoV-2 Antibody Test from Siemens He…

Public Health England, in partnership with the University of Oxford, recently conducted a head-to-head evaluation of four commercial immunoassay tests available in the UK and used for the detection of...

Researchers Develop Software to Find Dru…

Washington State University researchers have developed an easy-to-use software program to identify drug-resistant genes in bacteria. The program could make it easier to identify the deadly antimicrobial resistant bacteria that...

Philips Introduces First-of-a-Kind Mobil…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it introduced first-of-its-kind mobile Intensive Care Units (ICUs) in India. Designed to meet the critical-care requirements...

Proposed Framework for Integrating Chatb…

While the technology for developing artificial intelligence-powered chatbots has existed for some time, a new viewpoint piece in JAMA lays out the clinical, ethical, and legal aspects that must be...

Clinical-Grade Wearables Offer Continuou…

Although it might be tempting to rely on your fitness tracker to catch early signs of COVID-19, Northwestern University researchers caution that consumer wearables are not sophisticated enough to monitor...

World's Smallest Imaging Device has Hear…

A team of researchers led by the University of Adelaide and University of Stuttgart has used 3D micro-printing to develop the world's smallest, flexible scope for looking inside blood vessels...

Optimizing Neural Networks on a Brain-In…

Many computational properties are maximized when the dynamics of a network are at a "critical point", a state where systems can quickly change their overall characteristics in fundamental ways, transitioning...