Google Research Shows How AI can Make Ophthalmologists More Effective

As artificial intelligence continues to evolve, diagnosing disease faster and potentially with greater accuracy than physicians, some have suggested that technology may soon replace tasks that physicians currently perform. But a new study from the Google AI research group shows that physicians and algorithms working together are more effective than either alone. It's one of the first studies to examine how AI can improve physicians' diagnostic accuracy. The new research will be published in the April edition of Ophthalmology, the ournal of the American Academy of Ophthalmology.

This study expands on previous work from Google AI showing that its algorithm works roughly as well as human experts in screening patients for a common diabetic eye disease called diabetic retinopathy. For their latest study, the researchers wanted to see if their algorithm could do more than simply diagnose disease. They wanted to create a new computer-assisted system that could "explain" the algorithm's diagnosis. They found that this system not only improved the ophthalmologists' diagnostic accuracy, but it also improved algorithm's accuracy.

More than 29 million Americans have diabetes, and are at risk for diabetic retinopathy, a potentially blinding eye disease. People typically don't notice changes in their vision in the disease's early stages. But as it progresses, diabetic retinopathy usually causes vision loss that in many cases cannot be reversed. That's why it's so important that people with diabetes have yearly screenings.

Unfortunately, the accuracy of screenings can vary significantly. One study found a 49 percent error rate among internists, diabetologists, and medical residents.

Recent advances in AI promise to improve access to diabetic retinopathy screening and to improve its accuracy. But it's less clear how AI will work in the physician's office or other clinical settings. Previous attempts to use computer-assisted diagnosis shows that some screeners rely on the machine too much, which leads to repeating the machine's errors, or under-rely on it and ignore accurate predictions. Researchers at Google AI believe some of these pitfalls may be avoided if the computer can "explain" its predictions.

To test this theory, the researchers developed two types of assistance to help physicians read the algorithm's predictions.

  • Grades: A set of five scores that represent the strength of evidence for the algorithm's prediction.
  • Grades + heatmap: Enhance the grading system with a heatmap that measures the contribution of each pixel in the image to the algorithm's prediction.

Ten ophthalmologists (four general ophthalmologists, one trained outside the US, four retina specialists, and one retina specialist in training) were asked to read each image once under one of three conditions: unassisted, grades only, and grades + heatmap.

Both types of assistance improved physicians' diagnostic accuracy. It also improved their confidence in the diagnosis. But the degree of improvement depended on the physician's level of expertise.

Without assistance, general ophthalmologists are significantly less accurate than the algorithm, while retina specialists are not significantly more accurate than the algorithm. With assistance, general ophthalmologists match but do not exceed the model's accuracy, while retina specialists start to exceed the model's performance.

"What we found is that AI can do more than simply automate eye screening, it can assist physicians in more accurately diagnosing diabetic retinopathy," said lead researcher, Rory Sayres, PhD.. "AI and physicians working together can be more accurate than either alone."

Like medical technologies that preceded it, Sayres said that AI is another tool that will make the knowledge, skill, and judgment of physicians even more central to quality care.

"There's an analogy in driving," Sayres explained. "There are self-driving vehicles, and there are tools to help drivers, like Android Auto. The first is automation, the second is augmentation. The findings of our study indicate that there may be space for augmentation in classifying medical images like retinal fundus images. When the combination of clinician and assistant outperforms either alone, this provides an argument for up-leveling clinicians with intelligent tools."

Rory Sayres, Ankur Taly, Ehsan Rahimy, Katy Blumer, David Coz, Naama Hammel, Jonathan Krause, Arunachalam Narayanaswamy, Zahra Rastegar, Derek Wu, Shawn Xu, Scott Barb, Anthony Joseph, Michael Shumski, Jesse Smith, Arjun B Sood, Greg S Corrado, Lily Peng, Dale R Webster.
Using a Deep Learning Algorithm and Integrated Gradients Explanationto Assist Grading for Diabetic Retinopathy.
Ophthalmology, Volume 126, Issue 4, 552 - 564. doi: 10.1016/j.ophtha.2018.11.016.

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...