Google Research Shows How AI can Make Ophthalmologists More Effective

As artificial intelligence continues to evolve, diagnosing disease faster and potentially with greater accuracy than physicians, some have suggested that technology may soon replace tasks that physicians currently perform. But a new study from the Google AI research group shows that physicians and algorithms working together are more effective than either alone. It's one of the first studies to examine how AI can improve physicians' diagnostic accuracy. The new research will be published in the April edition of Ophthalmology, the ournal of the American Academy of Ophthalmology.

This study expands on previous work from Google AI showing that its algorithm works roughly as well as human experts in screening patients for a common diabetic eye disease called diabetic retinopathy. For their latest study, the researchers wanted to see if their algorithm could do more than simply diagnose disease. They wanted to create a new computer-assisted system that could "explain" the algorithm's diagnosis. They found that this system not only improved the ophthalmologists' diagnostic accuracy, but it also improved algorithm's accuracy.

More than 29 million Americans have diabetes, and are at risk for diabetic retinopathy, a potentially blinding eye disease. People typically don't notice changes in their vision in the disease's early stages. But as it progresses, diabetic retinopathy usually causes vision loss that in many cases cannot be reversed. That's why it's so important that people with diabetes have yearly screenings.

Unfortunately, the accuracy of screenings can vary significantly. One study found a 49 percent error rate among internists, diabetologists, and medical residents.

Recent advances in AI promise to improve access to diabetic retinopathy screening and to improve its accuracy. But it's less clear how AI will work in the physician's office or other clinical settings. Previous attempts to use computer-assisted diagnosis shows that some screeners rely on the machine too much, which leads to repeating the machine's errors, or under-rely on it and ignore accurate predictions. Researchers at Google AI believe some of these pitfalls may be avoided if the computer can "explain" its predictions.

To test this theory, the researchers developed two types of assistance to help physicians read the algorithm's predictions.

  • Grades: A set of five scores that represent the strength of evidence for the algorithm's prediction.
  • Grades + heatmap: Enhance the grading system with a heatmap that measures the contribution of each pixel in the image to the algorithm's prediction.

Ten ophthalmologists (four general ophthalmologists, one trained outside the US, four retina specialists, and one retina specialist in training) were asked to read each image once under one of three conditions: unassisted, grades only, and grades + heatmap.

Both types of assistance improved physicians' diagnostic accuracy. It also improved their confidence in the diagnosis. But the degree of improvement depended on the physician's level of expertise.

Without assistance, general ophthalmologists are significantly less accurate than the algorithm, while retina specialists are not significantly more accurate than the algorithm. With assistance, general ophthalmologists match but do not exceed the model's accuracy, while retina specialists start to exceed the model's performance.

"What we found is that AI can do more than simply automate eye screening, it can assist physicians in more accurately diagnosing diabetic retinopathy," said lead researcher, Rory Sayres, PhD.. "AI and physicians working together can be more accurate than either alone."

Like medical technologies that preceded it, Sayres said that AI is another tool that will make the knowledge, skill, and judgment of physicians even more central to quality care.

"There's an analogy in driving," Sayres explained. "There are self-driving vehicles, and there are tools to help drivers, like Android Auto. The first is automation, the second is augmentation. The findings of our study indicate that there may be space for augmentation in classifying medical images like retinal fundus images. When the combination of clinician and assistant outperforms either alone, this provides an argument for up-leveling clinicians with intelligent tools."

Rory Sayres, Ankur Taly, Ehsan Rahimy, Katy Blumer, David Coz, Naama Hammel, Jonathan Krause, Arunachalam Narayanaswamy, Zahra Rastegar, Derek Wu, Shawn Xu, Scott Barb, Anthony Joseph, Michael Shumski, Jesse Smith, Arjun B Sood, Greg S Corrado, Lily Peng, Dale R Webster.
Using a Deep Learning Algorithm and Integrated Gradients Explanationto Assist Grading for Diabetic Retinopathy.
Ophthalmology, Volume 126, Issue 4, 552 - 564. doi: 10.1016/j.ophtha.2018.11.016.

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

Two Artificial Intelligences Talk to Eac…

Performing a new task based solely on verbal or written instructions, and then describing it to others so that they can reproduce it, is a cornerstone of human communication that...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Powerful New AI can Predict People'…

A powerful new tool in artificial intelligence is able to predict whether someone is willing to be vaccinated against COVID-19. The predictive system uses a small set of data from demographics...

AI-Based App can Help Physicians Find Sk…

A mobile app that uses artificial intelligence, AI, to analyse images of suspected skin lesions can diagnose melanoma with very high precision. This is shown in a study led from...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...