A New Machine Learning Model can Classify Lung Cancer Slides at the Pathologist Level

Machine learning has improved dramatically in recent years and shown great promise in the field of medical image analysis. A team of research specialists at Dartmouth's Norris Cotton Cancer Center have utilized machine learning capabilities to assist with the challenging task of grading tumor patterns and subtypes of lung adenocarcinoma, the most common form of the leading cause of cancer-related deaths worldwide.

Currently, lung adenocarcinoma, requires pathologist's visual examination of lobectomy slides to determine the tumor patterns and subtypes. This classification has an important role in prognosis and determination of treatment for lung cancer, however is a difficult and subjective task. Using recent advances in machine learning, the team, led by Saeed Hassanpour, PhD, developed a deep neural network to classify different types of lung adenocarcinoma on histopathology slides, and found that the model performed on par with three practicing pathologists.

"Our study demonstrates that machine learning can achieve high performance on a challenging image classification task and has the potential to be an asset to lung cancer management," says Hassanpour. "Clinical implementation of our system would be able to assist pathologists for accurate classification of lung cancer subtypes, which is critical for prognosis and treatment."

The team's conclusions, "Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks" are newly published in Scientific Reports. Recognizing that the approach is potentially applicable to other histopathology image analysis tasks, Hassanpour's team made their code publicly available to promote new research and collaborations in this domain.

In addition to testing the deep learning model in a clinical setting to validate its ability to improve lung cancer classification, the team plans to apply the method to other challenging histopathology image analysis tasks in breast, esophageal, and colorectal cancer. "If validated through clinical trials, our neural network model can potentially be implemented in clinical practice to assist pathologists," says Hassanpour. "Our machine learning method is also fast and can process a slide in less than one minute, so it could help triage patients before examination by physicians and potentially greatly assist pathologists in the visual examination of slides."

Jason W Wei, Laura J Tafe, Yevgeniy A Linnik, Louis J Vaickus, Naofumi Tomita, Saeed Hassanpour.
Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks.
Scientific Reportsvolume 9, Article number: 3358 (2019). doi: 10.1038/s41598-019-40041-7.

Most Popular Now

New Computational Model of Real Neurons …

Nearly all the neural networks that power modern artificial intelligence (AI) tools such as ChatGPT are based on a 1960s-era computational model of a living neuron. A new model developed...

Meet CARMEN, a Robot that Helps People w…

Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation - a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory...

AI Matches Protein Interaction Partners

Proteins are the building blocks of life, involved in virtually every biological process. Understanding how proteins interact with each other is crucial for deciphering the complexities of cellular functions, and...

Mobile Phone Data Helps Track Pathogen S…

A new way to map the spread and evolution of pathogens, and their responses to vaccines and antibiotics, will provide key insights to help predict and prevent future outbreaks. The...

AI Model to Improve Patient Response to …

A new artificial intelligence (AI) tool that can help to select the most suitable treatment for cancer patients has been developed by researchers at The Australian National University (ANU). DeepPT, developed...

Can AI Tell you if You Have Osteoporosis…

Osteoporosis is so difficult to detect in early stage it’s called the "silent disease." What if artificial intelligence could help predict a patient’s chances of having the bone-loss disease before...

Study Reveals Why AI Models that Analyze…

Artificial intelligence (AI) models often play a role in medical diagnoses, especially when it comes to analyzing images such as X-rays. However, studies have found that these models don’t always...

Think You're Funny? ChatGPT might b…

A study comparing jokes by people versus those told by ChatGPT shows that humans need to work on their material. The research team behind the study published on Wednesday, July 3...

Innovative, Highly Accurate AI Model can…

If there is one medical exam that everyone in the world has taken, it's a chest x-ray. Clinicians can use radiographs to tell if someone has tuberculosis, lung cancer, or...

New AI Approach Optimizes Antibody Drugs

Proteins have evolved to excel at everything from contracting muscles to digesting food to recognizing viruses. To engineer better proteins, including antibodies, scientists often iteratively mutate the amino acids -...

AI Speeds Up Heart Scans, Saving Doctors…

Researchers have developed a groundbreaking method for analysing heart MRI scans with the help of artificial intelligence (AI), which could save valuable NHS time and resources, as well as improve...

Young People Believe that AI is a Valuab…

Children and young people are generally positive about artificial intelligence (AI) and think it should be used in modern healthcare, finds the first-of-its-kind survey led by UCL and Great Ormond...