New AI Toolkit is the 'Scientist that never Sleeps'

Researchers have developed a new AI-driven platform that can analyse how pathogens infect our cells with the precision of a trained biologist. The platform, HRMAn ('Herman'), which stands for Host Response to Microbe Analysis, is open-source, easy-to-use and can be tailored for different pathogens including Salmonella enterica.

Pioneered by scientists at the Francis Crick Institute and UCL, HRMAn uses deep neural networks to analyse complex patterns in images of pathogen and human ('host') cell interactions, pulling out the same detailed characteristics that scientists do by-hand. The research is published in the open access journal eLife, which includes a link to download the platform and access tutorial videos.

"What used to be a manual, time-consuming task for biologists now takes us a matter of minutes on a computer, enabling us to learn more about infectious pathogens and how our bodies respond to them, more quickly and more precisely," says Eva Frickel, Group Leader at the Crick, who led the project. "HRMAn can actually see host-pathogen interactions like a biologist, but unlike us, it doesn't get tired and need to sleep!"

To demonstrate the power of HRMAn - which runs on the KNIME platform - the team used it to analyse the body's response to Toxoplasma gondii, a parasite that replicates in cats and is thought to be carried by more than a third of the world's population.

Researchers in the Crick's High Throughput Screening facility collected over 30,000 microscope images of five different types of Toxoplasma-infected human cells and loaded them into HRMAn for analysis. HRMAn detected and analysed over 175,000 pathogen-containing cellular compartments, providing detailed information about the number of parasites per cell, the location of the parasites within the cells, and how many cell proteins interacted with the parasites, among other variables.

"Previous attempts at automating host-pathogen image analysis failed to capture this level of detail," says Artur Yakimovich, Research Associate in Jason Mercer's lab at the MRC LMCB at UCL and co-first author of the study. "Using the same sorts of algorithms that run self-driving cars, we've created a platform that boosts the precision of high volume biological data analysis, which has revolutionised what we can do in the lab. AI algorithms come in handy when the platform evaluates the image-based data in a way a trained specialist would. It's also really easy to use, even for scientists with little to no knowledge of coding."

The team also used HRMAn to analyse Salmonella enterica - a bacterial pathogen 16 times smaller than Toxoplasma, demonstrating its versatility for studying different pathogens.

"Our team uses HRMAn to answer specific questions about host-pathogen interactions, but it has far-reaching implications outside the field too," says Daniel Fisch, Crick PhD student and co-first author of the study. "HRMAn can analyse any fluorescence image, making it relevant for lots of different areas of biology, including cancer research."

Daniel Fisch, Artur Yakimovich, Barbara Clough, Joseph Wright, Monique Bunyan, Michael Howell, Jason Mercer, Eva Frickel.
Defining host–pathogen interactions employing an artificial intelligence workflow.
eLife 2019;8:e40560. doi: 10.7554/eLife.40560.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...