First Smartphone App to Detect Opioid Overdose and its Precursors

At least 115 people die every day in the U.S. after overdosing on opioids, according to the National Institute on Drug Abuse. And in 2016, illegal injectable opioids became the most common drug involved in overdose-related deaths. This spike has led to a national public health crisis and epidemic.

During an overdose, a person breathes slower or stops breathing altogether. These symptoms are reversible with the drug naloxone if caught in time.

But people who use opioids by themselves have no way of asking for help in the event of an overdose.

Researchers at the University of Washington have developed a cellphone app, called Second Chance, that uses sonar to monitor someone's breathing rate and sense when an opioid overdose has occurred. The app accurately detects overdose-related symptoms about 90 percent of the time and can track someone's breathing from up to 3 feet away. The team will publish its results Jan. 9 in Science Translational Medicine.

"The idea is that people can use the app during opioid use so that if they overdose, the phone can potentially connect them to a friend or emergency services to provide naloxone," said co-corresponding author Shyam Gollakota, an associate professor in the UW's Paul G. Allen School of Computer Science & Engineering. "Here we show that we have created an algorithm for a smartphone that is capable of detecting overdoses by monitoring how someone's breathing changes before and after opioid use."

The Second Chance app sends inaudible sound waves from the phone to people's chests and then monitors the way the sound waves return to the phone to look for specific breathing patterns.

"We're looking for two main precursors to opioid overdose: when a person stops breathing, or when a person's breathing rate is seven breaths per minute or lower," said co-corresponding author Dr. Jacob Sunshine, an assistant professor of anesthesiology and pain medicine at the UW School of Medicine. "Less than eight breaths per minute is a common cutoff point in a hospital that would trigger people to go to the bedside and make sure a patient is OK."

In addition to watching breathing, Second Chance also monitors how people move.

"People aren't always perfectly still while they're injecting drugs, so we want to still be able to track their breathing as they're moving around," said lead author Rajalakshmi Nandakumar, a doctoral student in the Allen School. "We can also look for characteristic motions during opioid overdose, like if someone's head slumps or nods off."

To be able to use real-world data to design and test the algorithm behind the app, the researchers partnered with the Insite supervised injection facility in Vancouver, Canada. Insite is the first legal supervised consumption site in North America. As part of the study, participants at Insite wore monitors on their chests that also track breathing rates.

"We asked participants to prepare their drugs like they normally would, but then we monitored them for a minute pre-injection so the algorithm could get a baseline value for their breathing rate," said Nandakumar. "After we got a baseline, we continued monitoring during the injection and then for five minutes afterward, because that's the window when overdose symptoms occur."

Of the 94 participants who tested the algorithm, 47 had a breathing rate of seven breaths per minute or slower, 49 stopped breathing for a significant period, and two people experienced an overdose event that required oxygen, ventilation and/or naloxone treatment. On average, the algorithm correctly identified breathing problems that foreshadow overdose 90 percent of the time.

The researchers also wanted to make sure the algorithm could detect actual overdose events, because these occur infrequently at Insite. The researchers worked with anesthesiology teams at UW Medical Center to "simulate" overdoses in an operating room, allowing the app to monitor people and detect when they stop breathing.

"When patients undergo anesthesia, they experience much of the same physiology that people experience when they're having an overdose," Sunshine said. "Nothing happens when people experience this event in the operating room because they're receiving oxygen and they are under the care of an anesthesiology team. But this is a unique environment to capture difficult-to-reproduce data to help further refine the algorithms for what it looks like when someone has an acute overdose."

For the simulation, the team recruited healthy participants undergoing previously scheduled elective surgeries. After providing informed consent, the patients then received standard anesthetic medications that led to 30 seconds of slower or absent breathing, and these events were captured by the device. The algorithm correctly predicted 19 out of the 20 simulated overdoses. For the one case it was wrong, the patient's breathing rate was just above the algorithm's threshold.

Right now, Second Chance is only monitoring the people who use it. The team would eventually like the app to interact with them.

"When the app detects decreased or absent breathing, we'd like it to send an alarm asking the person to interact with it," Gollakota said. "Then if the person fails to interact with it, that's when we say: 'OK this is a stage where we need to alert someone,' and the phone can contact someone with naloxone."

The researchers are applying for FDA approval and have plans to commercialize this technology through a UW spinout called Sound Life Sciences, Inc. While this app could be used for all forms of opioid use, the team cautions that right now they have only tested it on illegal injectable opioid use because deaths from those overdoses are the most common.

"We're experiencing an unprecedented epidemic of deaths from opioid use, and it's unfortunate because these overdoses are completely reversible phenomena if they're detected in time," Sunshine said. "The goal of this project is to try to connect people who are often experiencing overdoses alone to known therapies that can save their lives. We hope that by keeping people safer, they can eventually access long-term treatment."

Rajalakshmi Nandakumar, Shyamnath Gollakota, Jacob E Sunshine.
Opioid overdose detection using smartphones.
Science Translational Medicine, Vol. 11, Issue 474. doi: 10.1126/scitranslmed.aau8914.

Most Popular Now

IBM Watson Health Recognizes Top-Perform…

IBM (NYSE: IBM) Watson Health® announced its 2020 Fortune/IBM Watson Health 100 Top Hospitals list and 15 Top Health Systems award winners, naming the top-performing hospitals and health systems in...

Chatbots can Ease Medical Providers' Bur…

COVID-19 has placed tremendous pressure on health care systems, not only for critical care but also from an anxious public looking for answers. Research from the Indiana University Kelley School...

Abbott Receives FDA Approval for New Hea…

Abbott (NYSE: ABT) announced that the U.S. Food and Drug Administration (FDA) has approved the company's next-generation Gallant™ implantable cardioverter defibrillator (ICD) and cardiac resynchronization therapy defibrillator (CRT-D) devices. The...

The New Tattoo: Drawing Electronics on S…

One day, people could monitor their own health conditions by simply picking up a pencil and drawing a bioelectronic device on their skin. In a new study, University of Missouri...

Towards an AI Diagnosis Like the Doctor…

Artificial intelligence (AI) is an important innovation in diagnostics, because it can quickly learn to recognize abnormalities that a doctor would also label as a disease. But the way that...

SARS-CoV-2 Antibody Test from Siemens He…

Public Health England, in partnership with the University of Oxford, recently conducted a head-to-head evaluation of four commercial immunoassay tests available in the UK and used for the detection of...

Researchers Develop Software to Find Dru…

Washington State University researchers have developed an easy-to-use software program to identify drug-resistant genes in bacteria. The program could make it easier to identify the deadly antimicrobial resistant bacteria that...

Philips Introduces First-of-a-Kind Mobil…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it introduced first-of-its-kind mobile Intensive Care Units (ICUs) in India. Designed to meet the critical-care requirements...

Proposed Framework for Integrating Chatb…

While the technology for developing artificial intelligence-powered chatbots has existed for some time, a new viewpoint piece in JAMA lays out the clinical, ethical, and legal aspects that must be...

Clinical-Grade Wearables Offer Continuou…

Although it might be tempting to rely on your fitness tracker to catch early signs of COVID-19, Northwestern University researchers caution that consumer wearables are not sophisticated enough to monitor...

World's Smallest Imaging Device has Hear…

A team of researchers led by the University of Adelaide and University of Stuttgart has used 3D micro-printing to develop the world's smallest, flexible scope for looking inside blood vessels...

Optimizing Neural Networks on a Brain-In…

Many computational properties are maximized when the dynamics of a network are at a "critical point", a state where systems can quickly change their overall characteristics in fundamental ways, transitioning...