Stanford Researchers Create a Wireless, Battery-Free, Biodegradable Blood Flow Sensor

A new device developed by Stanford University researchers could make it easier for doctors to monitor the success of blood vessel surgery. The sensor, detailed in a paper published Jan. 8 in Nature Biomedical Engineering, monitors the flow of blood through an artery. It is biodegradable, battery-free and wireless, so it is compact and doesn't need to be removed and it can warn a patient's doctor if there is a blockage.

"Measurement of blood flow is critical in many medical specialties, so a wireless biodegradable sensor could impact multiple fields including vascular, transplant, reconstructive and cardiac surgery," said Paige Fox, assistant professor of surgery and co-senior author of the paper. "As we attempt to care for patients throughout the Bay Area, Central Valley, California and beyond, this is a technology that will allow us to extend our care without requiring face-to-face visits or tests."

Monitoring the success of surgery on blood vessels is challenging as the first sign of trouble often comes too late. By that time, the patient often needs additional surgery that carries risks similar to the original procedure. This new sensor could let doctors keep tabs on a healing vessel from afar, creating opportunities for earlier interventions.

Flow or no

The sensor wraps snugly around the healing vessel, where blood pulsing past pushes on its inner surface. As the shape of that surface changes, it alters the sensor's capacity to store electric charge, which doctors can detect remotely from a device located near the skin but outside the body. That device solicits a reading by pinging the antenna of the sensor, similar to an ID card scanner. In the future, this device could come in the form of a stick-on patch or be integrated into other technology, like a wearable device or smartphone.

The researchers first tested the sensor in an artificial setting where they pumped air through an artery-sized tube to mimic pulsing blood flow. Surgeon Yukitoshi Kaizawa, a former postdoctoral scholar at Stanford and co-author of the paper, also implanted the sensor around an artery in a rat. Even at such a small scale, the sensor successfully reported blood flow to the wireless reader. At this point, they were only interested in detecting complete blockages, but they did see indications that future versions of this sensor could identify finer fluctuations of blood flow.

The sensor is a wireless version of technology that chemical engineer Zhenan Bao has been developing in order to give prostheses a delicate sense of touch.

"This one has a history," said Bao, the K. K. Lee Professor in the School of Engineering and co-senior author of the paper. "We were always interested in how we can utilize these kinds of sensors in medical applications but it took a while to find the right fit."

The researchers had to modify their existing sensor's materials to make it sensitive to pulsing blood but rigid enough to hold its shape. They also had to move the antenna to a location where it would be secure, not affected by the pulsation, and re-design the capacitor so it could be placed around an artery.

"It was a very exacting project and required many rounds of experiments and redesign," said Levent Beker, co-lead author of the paper and a postdoctoral scholar in the Bao lab. "I've always been interested in medical and implant applications and this could open up a lot of opportunities for monitoring or telemedicine for many surgical operations."

Making connections

The idea of an artery sensor began to take shape when former postdoctoral fellow Clementine Boutry of the Bao lab reached out to Anaïs Legrand, who was a postdoctoral fellow in the Fox lab, and connected those groups - along with the lab of James Chang, the Johnson and Johnson Professor of Surgery.

Once they set their sights on the biodegradable blood flow monitor, the collaboration won a 2017 Postdocs at the Interface seed grant from Stanford ChEM-H, which supports postdoctoral research collaborations exploring potentially transformative new ideas.

"We both value our postdoctoral researchers but did not anticipate the true value this meeting would have for a long-term productive partnership," said Fox.

The researchers are now finding the best way to affix the sensors to the vessels and refining their sensitivity. They are also looking forward to what other ideas will come as interest grows in this interdisciplinary area.

"Using sensors to allow a patient to discover problems early on is becoming a trend for precision health," Bao said. "It will require people from engineering, from medical school and data people to really work together, and the problems they can address are very exciting."

Clementine M Boutry, Levent Beker, Yukitoshi Kaizawa, Christopher Vassos, Helen Tran, Allison C Hinckley, Raphael Pfattner, Simiao Niu, Junheng Li, Jean Claverie, Zhen Wang, James Chang, Paige M Fox, Zhenan Bao.
Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow.
Nature Biomedical Engineeringvolume 3, pages47-57 (2019). doi: 10.1038/s41551-018-0336-5.

Most Popular Now

Researchers Invent AI Model to Design Ne…

Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence (AI) model which can design billions of new antibiotic molecules that are inexpensive and easy to...

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Alcidion and Novari Health Forge Strateg…

Alcidion Group Limited, a leading provider of FHIR-native patient flow solutions for healthcare, and Novari Health, a market leader in waitlist management and referral management technologies, have joined forces to...

Greater Manchester Reaches New Milestone…

Radiologists and radiographers at Northern Care Alliance NHS Foundation Trust have become the first in Greater Manchester to use the Sectra picture archiving and communication system (PACS) to report on...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Advancing Drug Discovery with AI: Introd…

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

Wanted: Young Talents. DMEA Sparks Bring…

9 - 11 April 2024, Berlin, Germany. The digital health industry urgently needs skilled workers, which is why DMEA sparks focuses on careers, jobs and supporting young people. Against the backdrop of...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...