AI System may Accelerate Search for Cancer Discoveries

Searching through the mountains of published cancer research could be made easier for scientists, thanks to a new AI system. The system, called LION LBD and developed by computer scientists and cancer researchers at the University of Cambridge, has been designed to assist scientists in the search for cancer-related discoveries. It is the first literature-based discovery system aimed at supporting cancer research. The results are reported in the journal Bioinformatics.

Global cancer research attracts massive amounts of funding worldwide, and the scientific literature is now so huge that researchers are struggling to keep up with it: critical hypothesis-generating evidence is now often discovered long after it was published.

Cancer is a complex class of diseases that are not completely understood and are the second-leading cause of death worldwide. Cancer development involves changes in numerous chemical and biochemical molecules, reactions and pathways, and cancer research is being conducted across a wide variety of scientific fields, which have variability in the way that they describe similar concepts.

"As a cancer researcher, even if you knew what you were looking for, there are literally thousands of papers appearing every day," said Professor Anna Korhonen, Co-Director of Cambridge's Language Technology Lab who led the development of LION LBD in collaboration with Dr Masashi Narita at Cancer Research UK Cambridge Institute and Professor Ulla Stenius at Karolinska Institutet in Sweden. "LION LBD uses AI to help scientists keep up-to-date with published discoveries in their field, but could also help them make new discoveries by combining what is already known in the literature by making connections between sources that may appear to be unrelated."

The 'LBD' in LION LBD stands for Literature-Based Discovery, a concept developed in the 1980s which seeks to make new discoveries by combing pieces of information from disconnected sources. The key idea behind the original version of LBD is that concepts that are never explicitly linked in the literature may be indirectly linked through intermediate concepts.

The design of the LION LBD system allows real-time search to discover indirect associations between entities in a database of tens of millions of publications while preserving the ability of users to explore each mention in its original context.

"For example, you may know that a cancer drug affects the behaviour of a certain pathway, but with LION LBD, you may find that a drug developed for a totally different disease affects the same pathway," said Korhonen.

LION LBD is the first system developed specifically for the needs of cancer research. It has a particular focus on the molecular biology of cancer and uses state-of-the-art machine learning and natural language processing techniques, in order to detect references to the hallmarks of cancer in the text. Evaluations of the system have demonstrated its ability to identify undiscovered links and to rank relevant concepts highly among potential connections.

The system is built using open data, open source and open standards, and is available as an interactive web-based interface or a programmable API.

The researchers are currently working on extending the scope of LION-LBD to include further concepts and relations. They are also working closely with cancer researchers to help and improve the technology for end users.

The system was developed in collaboration with University of Cambridge Language Technology Lab, Cancer Research UK Cambridge Institute, and Karolinska Institutet in Sweden, and was funded by the Medical Research Council.

Sampo Pyysalo, Simon Baker, Imran Ali, Stefan Haselwimmer, Tejas Shah, Andrew Young, Yufan Guo, Johan Högberg, Ulla Stenius, Masashi Narita, Anna Korhonen.
LION LBD: a literature-based discovery system for cancer biology.
Bioinformatics, doi: 10.1093/bioinformatics/bty845.

Most Popular Now

IBM Watson Health Recognizes Top-Perform…

IBM (NYSE: IBM) Watson Health® announced its 2020 Fortune/IBM Watson Health 100 Top Hospitals list and 15 Top Health Systems award winners, naming the top-performing hospitals and health systems in...

Chatbots can Ease Medical Providers' Bur…

COVID-19 has placed tremendous pressure on health care systems, not only for critical care but also from an anxious public looking for answers. Research from the Indiana University Kelley School...

Abbott Receives FDA Approval for New Hea…

Abbott (NYSE: ABT) announced that the U.S. Food and Drug Administration (FDA) has approved the company's next-generation Gallant™ implantable cardioverter defibrillator (ICD) and cardiac resynchronization therapy defibrillator (CRT-D) devices. The...

The New Tattoo: Drawing Electronics on S…

One day, people could monitor their own health conditions by simply picking up a pencil and drawing a bioelectronic device on their skin. In a new study, University of Missouri...

Towards an AI Diagnosis Like the Doctor…

Artificial intelligence (AI) is an important innovation in diagnostics, because it can quickly learn to recognize abnormalities that a doctor would also label as a disease. But the way that...

SARS-CoV-2 Antibody Test from Siemens He…

Public Health England, in partnership with the University of Oxford, recently conducted a head-to-head evaluation of four commercial immunoassay tests available in the UK and used for the detection of...

Researchers Develop Software to Find Dru…

Washington State University researchers have developed an easy-to-use software program to identify drug-resistant genes in bacteria. The program could make it easier to identify the deadly antimicrobial resistant bacteria that...

Philips Introduces First-of-a-Kind Mobil…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today announced it introduced first-of-its-kind mobile Intensive Care Units (ICUs) in India. Designed to meet the critical-care requirements...

Proposed Framework for Integrating Chatb…

While the technology for developing artificial intelligence-powered chatbots has existed for some time, a new viewpoint piece in JAMA lays out the clinical, ethical, and legal aspects that must be...

Clinical-Grade Wearables Offer Continuou…

Although it might be tempting to rely on your fitness tracker to catch early signs of COVID-19, Northwestern University researchers caution that consumer wearables are not sophisticated enough to monitor...

World's Smallest Imaging Device has Hear…

A team of researchers led by the University of Adelaide and University of Stuttgart has used 3D micro-printing to develop the world's smallest, flexible scope for looking inside blood vessels...

Optimizing Neural Networks on a Brain-In…

Many computational properties are maximized when the dynamics of a network are at a "critical point", a state where systems can quickly change their overall characteristics in fundamental ways, transitioning...