BIOTEX Project

Integration of health monitoring tools into textiles brings the benefits of safety and comfort to the users. Instrumented clothes will provide remote monitoring of vitals signs, diagnostics to improve early illness detection and metabolic disorder and benefits to the reduction on medical social costs to the citizen. Ambulatory healthcare, isolated people, convalescent people and patients with chronic diseases are addressed.

To date, developments in that field are mainly focused on physiological measurements (body temperature, electro-cardiogram, electromyogram, breath rhythm, etc.) with first applications targeting sport monitoring and prevention of cardiovascular risk. Biochemical measurements on body fluids will be needed to tackle very important health and safety issues.

The BIOTEX project aims at developing dedicated biochemical-sensing techniques compatible with integration into textile. This goal represents a complete breakthrough, which allows for the first time the monitoring of body fluids via sensors distributed on a textile substrate and performing biochemical measurements. BIOTEX is addressing the sensing part and its electrical or optical connection to a signal processor. The approach aims at developing sensing patches, adapted to different targeted body fluids and biological species to be monitored, where the textile itself is the sensor. The extension to whole garment and the integration with physiological monitors is part of the roadmap of the consortium.

The BIOTEX project is a Specific Targeted Research or Innovation Project (STREP) part of the Sixth Framework Programme of the European Commission, Priority 2&3, joint call between IST (Information Society Technologies) and NMP (Nanotechnology and nanosciences, knowledge-based multifunctional materials and new production processes and devices).

The consortium consists of 8 partners from 4 countries. It includes two research institutes in the field of micro and nanotechnology, two SMEs active in clothing R&D and production, two universities leader in wearable bioengineering, and two companies expert in engineering and manufacturing of textiles for demanding markets.

For further information, please visit:
http://www.biotex-eu.com

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...