Nanomedicine: Drugs can be Made 'Smarter'

A new method has been developed to make drugs 'smarter' using nanotechnology so they will be more effective at reaching their target. Scientists from the University of Lincoln, UK, have devised a new technique to 'decorate' gold nanoparticles with a protein of choice so they can be used to tailor drug to more accurately target an area on the body, such as a cancer tumour.

Gold nanoparticles are spheres made of gold atoms having a diameter of only few billionths of a metre which can be coated with a biological protein and combined with drugs to enable the treatment to travel through the body and reach the affected area.

The nanoparticles can 'adsorb' (hold on its surface) drugs which would otherwise become insoluble or quickly degrade in the blood stream, and due to their small size they can overcome biological barriers such as membranes, skin and the small intestine which would usually prevent the drug from reaching its target.

The technology is already used in real world applications such as pregnancy tests - where gold nanoparticles decorated with an antibody against the hormone present in the urine of pregnant women is added to the 'positive' strip so it reacts with the nanoparticles to turn the stick red - but is not yet widely used in drug development.

Until now the process of coating the nanoparticles meant that the proteins used had to be 'mixed' together with particles which do not have the ability to control the way they bind, possibly making the drug less effective. The new method enables pharmacologists to place the proteins onto the gold nanoparticles layer by layer in a specific order. This maintains the integrity of the protein so that the drug is more effective, opening up possibilities for the development of nanomedicine.

The findings have been published in the journal Nature Communications.

Dr Enrico Ferrari, a nanobiotechnologist from the University of Lincoln's School of Life Sciences, led the study. He said: "Gold nanoparticles are a vital tool in new drug development and drug delivery systems. We have unlocked the key to binding proteins and molecules so that those drugs will be more effective.

"This method might help to design nanomedicines that do not need extensive chemical modification of a protein drug or a nano-carrier and therefore can be developed more easily and faster."

Researchers took fragments of proteins from bacteria and flatworms, which when fused together were effective at binding to the gold nanoparticle surface and able to form stable bonds to any other protein.

By mixing this fusion protein with gold nanoparticles, it permanently binds to the gold surface while also being able to stably bind a target protein on which a specific 'tag' was included.

This is a new universal method to bind proteins to nanoparticles which will work for most proteins, making the process a more attractive prospect for pharmaceutical companies, the researchers said. The method could also potentially be applied to biosensors and diagnostic kits that use gold, such as those used in clinical settings to identify ongoing infections in patients' blood.

Wenwei Ma, Angela Saccardo, Danilo Roccatano, Dorothy Aboagye-Mensah, Mohammad Alkaseem, Matthew Jewkes, Francesca Di Nezza, Mark Baron, Mikhail Soloviev, Enrico Ferrari.
Modular assembly of proteins on nanoparticles.
Nature Communicationsvolume 9, Article number: 1489 (2018). doi: 10.1038/s41467-018-03931-4.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...