Detailed Images of Tumor Vasculature

The new technology has been developed jointly by teams headed by Prof Dr Georg Schmitz at the Chair for Medical Engineering at Ruhr-Universität Bochum and by Prof Dr Fabian Kiessling at the Institute for Experimental Molecular Imaging at the University Hospital Aachen. They published their report in the journal Nature Communications from April 18, 2018.

The new technology called "Motion Model Ultrasound Localization Microscopy" is based on contrast medium-enhanced ultrasound images. Microbubbles are administered to patients as contrast agents: gas bubbles no larger than one micrometre that travel through the body in the bloodstream. In ultrasound images, they appear as shapeless white blobs. "Once the centre of each of these blobs has been identified, it's possible to determine the location of individual bubbles," explains Georg Schmitz.

Using algorithms originally developed for radar technology, the research team successfully monitored the motion of individual microbubbles. "We are currently attempting to teach the computer something that our eyes are able to do: namely read movement in a sequence of images in which a dot appears in different locations," says Schmitz. To this end, the researchers gave each bubble a name. Thus, they were able to track their paths through the vascular system and count them in the process.

Subsequently, fine vascular networks can be reconstructed based on the motion of the bubbles. The direction and speed of the blood flow can likewise be recorded. The resolution of the images is greatly enhanced: experts refer to the technique as super-resolution imaging.

"In the publication, we demonstrated that the synthesis of morphological and functional parameters considerably facilitates the differentiation between tumour types," explains Fabian Kiessling. In the course of their project, they tested the technique in three model cases, including in human subjects. In collaboration with Prof Dr Elmar Stickeler from the Clinic for Gynaecology and Obstetrics at the University Hospital Aachen, the researchers successfully identified how tumour vessels responded to chemotherapy in breast cancer patients.

"One reason why this is important is because new therapy approaches aim at manipulating the vascular system of tumours, in order to enhance the therapeutic effect by increasing the concentration of drugs in the tumours," says Fabian Kiessling. One of these approaches is so-called sonoporation. Here, tumours are treated with ultrasound in order to render the vascular walls more permeable to active substances.

"The advantage of our approach is that it can be performed with conventional ultrasound scanners, which have a low frame frequency, with sometimes as few as 15 images per second," points out Georg Schmitz. The research teams have already filed an application for a follow-up project, in the course of which they intend to test the method in large-scale clinical studies.

Tatjana Opacic, Stefanie Dencks, Benjamin Theek, Marion Piepenbrock, Dimitri Ackermann, Anne Rix, Twan Lammers, Elmar Stickeler, Stefan Delorme, Georg Schmitz, Fabian Kiessling.
Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization.
Nature Communications, 2018, doi: 10.1038/s41467-018-03973-8.

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...