Lung Cancer Drug Resistance Explained by Computer Simulations

Scientists from the Universities of Bristol and Parma, Italy, have used molecular simulations to understand resistance to osimertinib - an anticancer drug used to treat types of lung cancer. Osimertinib binds tightly to a protein, epidermal growth factor receptor (EGFR), which is overexpressed in many tumours. EGFR is involved in a pathway that signals for cell proliferation, and so is a target for drugs. Blocking the action of EGFR (inhibiting it) can switch it off, and so is a good way to treat the disease.

Osimertinib is an effective anticancer drug that works in this way. It is used to treat non-small-cell lung cancer (NSCLC), in cases where the cancer cells have a particular (T790M) mutant form of EGFR.

It is a so-called 'third-generation' EGFR inhibitor, which was approved as a cancer treatment in 2017. Osimertinib is a covalent inhibitor: as such, it binds irreversibly to EGFR by forming a chemical bond with it.

Although patients generally respond well to osimertinib, most acquire drug resistance within one year of treatment, so the drug stops working.

Drug resistance arises because the EGFR protein mutates, so that the drug binds less tightly.

One such mutation, called L718Q, was recently discovered in patients in the clinic by the Medical Oncology Unit of the University Hospital of Parma.

In this drug resistant mutant, a single amino acid is changed. Unlike other drug resistant mutants, it was not at all clear how this change stops the drug from binding effectively, information potentially crucial in developing new drugs to overcome resistance.

Now, a collaboration between medicinal and computational chemists and clinical oncologists has revealed exactly how subtle changes in the protein target cause drug resistance.

Using a range of advanced molecular simulation techniques, scientists from the Universities of Bristol and Parma, Italy, showed that the structure of the mutant protein changes in a way that stops the drug reacting and binding to it.

Adrian Mulholland, Professor of Chemistry at the University of Bristol, said: "This work shows how molecular simulations can reveal mechanisms of drug resistance, which can be subtle and non-obvious.

"In particular, here we've used combined quantum mechanics/molecular mechanics (QM/MM) methods, which allow us to study chemical reactions in proteins.

"This is crucial in investigating covalent inhibitors, which react with their biological targets, and are the focus of growing interest in the pharmaceutical industry."

His collaborators, Professor Alessio Lodola and Professor Marco Mor of the Drug Design and Discovery group at the University of Parma, added: "It was an exciting experience to work closely with clinical colleagues who identified the mutant, and to help analyse its effects.

"Now the challenge is to exploit this discovery in the development of novel drugs targeting EGFR mutants for cancer treatment in future."

D Callegari, KE Ranaghan, CJ Woods, R Minari, cM Tiseo, cM Mor, AJ Mulhollandb, A Lodola.
L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib.
Chemical Science. doi: 10.1039/C7SC04761D.

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...