eHealth Project of the Month - SYMBIOmatics

ICT for HealthThe increasing convergence of biology, medicine and genetics provides an opportunity to leverage synergies between the three areas for the benefit of health. Biology and genetics are emerging as information sciences while medicine is increasingly adopting information systems and informatics approaches to support healthcare delivery.

Bioinformatics and medical (or health) informatics are both rapidly advancing fields. Advances in molecular biology and genetics are broadening the domain of bioinformatics to embrace the biology of cells, tissues, organs, organisms and populations. Within medicine, increasing understanding of the molecular basis of disease, and the effect of genotype on disease propensity and treatment efficacy, creates an opportunity for increased convergence between the disciplines and the leverage of synergies for the benefit of health.

The SYMBIOmatics Specific Support Action (SSA) is an information gathering and dissemination activity that was designed to identify and exploit synergies between bioinformatics and medical informatics as well as identifying addressable challenges for the medium term future. The project documented the state-of-the-art in biomedical informatics in Europe and identified prioritised areas of new opportunity.

The Information and Communication Technologies for BIO-medical Sciences in Brussels on 29th to 30th June 2006 presented the initial findings for discussion by the wider community of bioinformatician, medical informaticians, medical practitioners and policy makers. A White Paper summarising the findings is now available for download from http://www.symbiomatics.org.

The white paper identifies thirty-one areas of potential synergies, significantly more than in previous analyses suggesting a broadening the areas of synergy. The further indicated that much of the state of the art activity in Europe is being co-ordinated through EU or international projects - often in partnership with the new NLM National Centres of Biomedical Informatics in the USA, but typically not solely at the level of individual EU member states. This represents a maturing of the field as is indicate of the importance placed by funding organisations.

Through a process of facilitated workshops, and on-line consultation, stakeholders were asked to give preferences for the thirty-one areas in respect of three prioritisation criteria that are the appropriateness to be funded at a European level (EU funding), the likelihood of strong intermediate results (Impact), and the industry commitment/validation. The process and outcomes are described in detail in the white paper.

Objectives of the white paper
The objectives of the SYMBIOmatics' project are information gathering, prioritisation of oppotunities and the generation of recommendations for research actions in the area of biomedical informatics.

These objectives will contribute directly to the scientific, technical, wide societal and policy objectives of biomedical informatics. The societal opportunity associated with these advances dependent upon biomedical informatics relates to improved healthcare and well-being for EU citizens across all member states.

The synergies that emerge from the integration of these fields will enable more dynamic and faster breakthroughs in medicine and healthcare. This will have a direct societal impact on different stakeholders, including individual citizens, healthcare professionals, scientists, healthcare providers, policy and decision makers, industry, society, etc.

Research in identified areas
As result of the Symbiomatics process a list of high priority areas of research has been identified, such as Gene Expression Information in Medical Diagnostics & Prognostics, Modelling & Simulation of Biological Structures & Processes/Diseases, Integration of Data from Biosensors & Medical Devices with Clinical Information Systems, Integration of patient molecular data in Electronic Health Records, Semantic Interoperability and Ontologies in Biomedicine and Data Interoperability & Standards to name a few.

Benefits in supporting research - conclusions
From the study it emerges that there are many new and developing areas of synergy between bioinformatics and medical (or health) informatics, with significant potential benefits in the delivery of healthcare to citizens. Building on of the support already provided in the 6th Framework programme, the European Commission will continue to fund research focusing these high priority areas in the 7th FP.

Project website: http://www.symbiomatics.org

For further information:
ICT for Health
European Commission - Information society and Media DG
Office: BU31 06/73 B-1049 Brussels
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Tel: +32 2 296 41 94
Fax: +32 2 296 01 81
http://europa.eu/information_society/eHealth

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...