eHealth Project of the Month - SYMBIOmatics

ICT for HealthThe increasing convergence of biology, medicine and genetics provides an opportunity to leverage synergies between the three areas for the benefit of health. Biology and genetics are emerging as information sciences while medicine is increasingly adopting information systems and informatics approaches to support healthcare delivery.

Bioinformatics and medical (or health) informatics are both rapidly advancing fields. Advances in molecular biology and genetics are broadening the domain of bioinformatics to embrace the biology of cells, tissues, organs, organisms and populations. Within medicine, increasing understanding of the molecular basis of disease, and the effect of genotype on disease propensity and treatment efficacy, creates an opportunity for increased convergence between the disciplines and the leverage of synergies for the benefit of health.

The SYMBIOmatics Specific Support Action (SSA) is an information gathering and dissemination activity that was designed to identify and exploit synergies between bioinformatics and medical informatics as well as identifying addressable challenges for the medium term future. The project documented the state-of-the-art in biomedical informatics in Europe and identified prioritised areas of new opportunity.

The Information and Communication Technologies for BIO-medical Sciences in Brussels on 29th to 30th June 2006 presented the initial findings for discussion by the wider community of bioinformatician, medical informaticians, medical practitioners and policy makers. A White Paper summarising the findings is now available for download from http://www.symbiomatics.org.

The white paper identifies thirty-one areas of potential synergies, significantly more than in previous analyses suggesting a broadening the areas of synergy. The further indicated that much of the state of the art activity in Europe is being co-ordinated through EU or international projects - often in partnership with the new NLM National Centres of Biomedical Informatics in the USA, but typically not solely at the level of individual EU member states. This represents a maturing of the field as is indicate of the importance placed by funding organisations.

Through a process of facilitated workshops, and on-line consultation, stakeholders were asked to give preferences for the thirty-one areas in respect of three prioritisation criteria that are the appropriateness to be funded at a European level (EU funding), the likelihood of strong intermediate results (Impact), and the industry commitment/validation. The process and outcomes are described in detail in the white paper.

Objectives of the white paper
The objectives of the SYMBIOmatics' project are information gathering, prioritisation of oppotunities and the generation of recommendations for research actions in the area of biomedical informatics.

These objectives will contribute directly to the scientific, technical, wide societal and policy objectives of biomedical informatics. The societal opportunity associated with these advances dependent upon biomedical informatics relates to improved healthcare and well-being for EU citizens across all member states.

The synergies that emerge from the integration of these fields will enable more dynamic and faster breakthroughs in medicine and healthcare. This will have a direct societal impact on different stakeholders, including individual citizens, healthcare professionals, scientists, healthcare providers, policy and decision makers, industry, society, etc.

Research in identified areas
As result of the Symbiomatics process a list of high priority areas of research has been identified, such as Gene Expression Information in Medical Diagnostics & Prognostics, Modelling & Simulation of Biological Structures & Processes/Diseases, Integration of Data from Biosensors & Medical Devices with Clinical Information Systems, Integration of patient molecular data in Electronic Health Records, Semantic Interoperability and Ontologies in Biomedicine and Data Interoperability & Standards to name a few.

Benefits in supporting research - conclusions
From the study it emerges that there are many new and developing areas of synergy between bioinformatics and medical (or health) informatics, with significant potential benefits in the delivery of healthcare to citizens. Building on of the support already provided in the 6th Framework programme, the European Commission will continue to fund research focusing these high priority areas in the 7th FP.

Project website: http://www.symbiomatics.org

For further information:
ICT for Health
European Commission - Information society and Media DG
Office: BU31 06/73 B-1049 Brussels
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Tel: +32 2 296 41 94
Fax: +32 2 296 01 81
http://europa.eu/information_society/eHealth

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...